RESUMEN
Increased soil salinity is one of the main concerns in agriculture and food production, and it negatively affects plant growth and crop productivity. In order to mitigate the adverse effects of salinity stress, plant biostimulants (PBs) have been indicated as a promising approach. Indeed, these products have a beneficial effect on plants by acting on primary and secondary metabolism and by inducing the accumulation of protective molecules against oxidative stress. In this context, the present work is aimed at comparatively investigating the effects of microbial (i.e., Azospirillum brasilense) and plant-derived biostimulants in alleviating salt stress in tomato plants by adopting a multidisciplinary approach. To do so, the morphological and biochemical effects were assessed by analyzing the biomass accumulation and root characteristics, the activity of antioxidant enzymes and osmotic stress protection. Furthermore, modifications in the metabolomic profiles of both leaves and root exudates were also investigated by ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UHPLC/QTOF-MS). According to the results, biomass accumulation decreased under high salinity. However, the treatment with A. brasilense considerably improved root architecture and increased root biomass by 156% and 118% in non-saline and saline conditions, respectively. The antioxidant enzymes and proline production were enhanced in salinity stress at different levels according to the biostimulant applied. Moreover, the metabolomic analyses pointed out a wide set of processes being affected by salinity and biostimulant interactions. Crucial compounds belonging to secondary metabolism (phenylpropanoids, alkaloids and other N-containing metabolites, and membrane lipids) and phytohormones (brassinosteroids, cytokinins and methylsalicylate) showed the most pronounced modulation. Overall, our results suggest a better performance of A. brasilense in alleviating high salinity than the vegetal-derived protein hydrolysates herein evaluated.
Asunto(s)
Azospirillum brasilense , Solanum lycopersicum , Solanum lycopersicum/metabolismo , Azospirillum brasilense/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Raíces de Plantas/metabolismo , Plantas/metabolismo , Estrés SalinoRESUMEN
Cross-adaptation phenomena in bacterial populations, induced by sublethal doses of antibacterial solutions, are a major problem in the field of food safety. In this regard, essential oils and their major compounds appear as an effective alternative to common sanitizers in food industry environments. The present study aimed to evaluate the untargeted metabolomics perturbations of Salmonella enterica serovar Enteritidis that has been previously exposed to the sublethal doses of the major components of essential oils: cinnamaldehyde, citral, and linalool (CIN, CIT, and LIN, respectively). Cinnamaldehyde appeared to be the most efficient compound in the assays evaluating the inhibitory effects [0.06% (v/v) as MBC]. Also, preliminary tests exhibited a phenotype of adaptation in planktonic and sessile cells of S. Enteritidis when exposed to sublethal doses of linalool, resulting in tolerance to previously lethal concentrations of citral. A metabolomics approach on S. Enteritidis provided an important insight into the phenomenon of cross-adaptation induced by sublethal doses of major compounds of some essential oils. In addition, according to the results obtained, when single molecules were used, many pathways may be involved in bacterial tolerance, which could be different from the findings revealed in previous studies regarding the use of phytocomplex of essential oils. Orthogonal projection to latent structures (OPLS) proved to be an interesting predictive model to demonstrate the adaptation events in pathogenic bacteria because of the global engagement to prevent and control foodborne outbreaks.
RESUMEN
Microbiological safety in food industry are always a concern regarding sublethal tolerance in bacteria for common and natural sanitizers. Natural bacteriocins, such as nisin (NIS), may negatively interfere in the efficiency of major compounds of essential oils against foodborne pathogenic bacteria. However, nanoemulsioned forms increase the bactericidal potential of natural compounds acting synergistically. In this study, cinnamaldehyde (CIN), citral (CIT), and linalool (LIN) were evaluated independently, associated with NIS, and in nanoemulsions (NEs) against Bacillus cereus using untargeted-metabolomics. Results revealed morphological changes in the structure of B. cereus treated with NEs of CIN and CIT, both NIS-associated. In addition, sensibility tests and UHPLC-QTOF-MS analyses indicated that NIS might react together with CIT reducing the bactericidal efficiency, while the nanoemulsion of CIT effect was enhanced by NIS in nanoemulsioned forms. This study highlights the importance of prudent administration of natural compounds as antimicrobial agents to prevent sublethal tolerance in pathogenic bacteria.
Asunto(s)
Bacteriocinas , Aceites Volátiles , Antibacterianos/farmacología , Bacillus cereus , Metabolómica , Aceites Volátiles/farmacologíaRESUMEN
Sweet basil (Ocimum basilicum L.) is one of the most produced aromatic herbs in the world, exploiting hydroponic systems. It has been widely assessed that macronutrients, like nitrogen (N) and sulfur (S), can strongly affect the organoleptic qualities of agricultural products, thus influencing their nutraceutical value. In addition, plant-growth-promoting rhizobacteria (PGPR) have been shown to affect plant growth and quality. Azospirillum brasilense is a PGPR able to colonize the root system of different crops, promoting their growth and development and influencing the acquisition of mineral nutrients. On the bases of these observations, we aimed at investigating the impact of both mineral nutrients supply and rhizobacteria inoculation on the nutraceutical value on two different sweet basil varieties, i.e., Genovese and Red Rubin. To these objectives, basil plants have been grown in hydroponics, with nutrient solutions fortified for the concentration of either S or N, supplied as SO4 2- or NO3 -, respectively. In addition, plants were either non-inoculated or inoculated with A. brasilense. At harvest, basil plants were assessed for the yield and the nutraceutical properties of the edible parts. The cultivation of basil plants in the fortified nutrient solutions showed a general increasing trend in the accumulation of the fresh biomass, albeit the inoculation with A. brasilense did not further promote the growth. The metabolomic analyses disclosed a strong effect of treatments on the differential accumulation of metabolites in basil leaves, producing the modulation of more than 400 compounds belonging to the secondary metabolism, as phenylpropanoids, isoprenoids, alkaloids, several flavonoids, and terpenoids. The primary metabolism that resulted was also influenced by the treatments showing changes in the fatty acid, carbohydrates, and amino acids metabolism. The amino acid analysis revealed that the treatments induced an increase in arginine (Arg) content in the leaves, which has been shown to have beneficial effects on human health. In conclusion, between the two cultivars studied, Red Rubin displayed the most positive effect in terms of nutritional value, which was further enhanced following A. brasilense inoculation.
RESUMEN
The present study was conducted to characterize the metabolome of accessory gland fluid (AGF) of locally adapted Morada Nova rams, raised in the Brazilian Northeast. AGF was collected by an artificial vagina from five vasectomized rams. Metabolites were identified by gas chromatography-mass spectrometry (GC/MS) and high-performance liquid chromatography-mass spectrometry (LC/MS), with the support of Human Metabolome Database, PubChem, LIPID Metabolites, Pathways Strategy databases, and MetaboAnalyst platforms. There were 182 and 190 metabolites detected by GC/MS and LC/MS, respectively, with an overlap of one molecule. Lipids and lipid-like molecules were the most abundant class of metabolites in the ram AGF (127 compounds), followed by amino acids, peptides, and analogs(103 metabolites). Considering all GC/MS and LC/MS, fructose, glycerol, citric acid, d-mannitol, d-glucose, and l-(+)-lactic acid were the most abundant single metabolites present in the ram AGF. Meaningful pathways associated with AGF metabolites included glycine, serine and threonine metabolism; pantothenate and CoA biosynthesis; galactose metabolism; glutamate metabolism and phenylalanine metabolism, and so forth. In conclusion, the combined use of LC/MS and GC/MS was essential for getting a holistic view of the compounds embedded in the ram AGF. Chemical analysis of the accessory sex gland secretion is relevant for understanding sperm function and fertilization.
Asunto(s)
Metaboloma , Metabolómica/métodos , Semen/química , Semen/metabolismo , Ovinos/metabolismo , Espermatozoides/química , Espermatozoides/metabolismo , Aminoácidos , Animales , Brasil , Cromatografía Líquida de Alta Presión/métodos , Fertilidad , Fertilización , Cromatografía de Gases y Espectrometría de Masas/métodos , Lípidos , Masculino , Redes y Vías Metabólicas , Vasectomía/veterinariaRESUMEN
BACKGROUND: In the present study a metabolomics-based approach was used to discriminate among different hazelnut cultivars and to trace their geographical origins. Ultra-high-pressure liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry (UHPLC-ESI/QTOF-MS) was used to profile phenolic and sterolic compounds. RESULTS: Compounds were identified against an in-house database using accurate monoisotopic mass and isotopic patterns. The screening approach was designed to discern 15 hazelnut cultivars and to discriminate among the geographical origins of six cultivars from the four main growing regions (Chile, Georgia, Italy, and Turkey). This approach allowed more than 1000 polyphenols and sterols to be annotated. The metabolomics data were elaborated with both unsupervised (hierarchical clustering) and supervised (orthogonal projections to latent structures discriminant analysis, OPLS-DA) statistics. These multivariate statistical tools allowed hazelnut samples to be discriminated, considering both 'cultivar type' and 'geographical origin'. Flavonoids (anthocyanins, flavanols and flavonols - VIP scores 1.34-1.49), phenolic acids (mainly hydroxycinnamics - VIP scores 1.35-1.55) together with cholesterol, ergosterol, and stigmasterol derivatives (VIP scores 1.34-1.49) were the best markers to discriminate samples according to geographical origin. CONCLUSIONS: This work illustrates the potential of untargeted profiling of phenolics and sterols based on UHPLC-ESI/QTOF mass spectrometry to discriminate hazelnut and support authenticity and origin. © 2019 Society of Chemical Industry.