Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.377
Filtrar
1.
Plast Reconstr Surg ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39287625

RESUMEN

BACKGROUND: Burn wound healing is a complex physiological process that requires complicated regulation by different cells and tissues. Brown adipose tissue (BAT) plays a key role in the hypermetabolic response to severe burns. However, it is unclear whether BAT contributes to burn wound healing. METHODS: Mice were divided into two groups: brown adipose tissue removal group (BR group) and control group. Burn wounds were created on the backs of mice (weighing 20-25g), who were exposed to 100°C hot water for 12 seconds using a homemade burn tube, resulting in a burned area measuring 10 mm in diameter. The treatments were applied once a day for 10 days. Full-thickness wound tissue was collected on days 1, 4, 7, 10, and analyzed by immunostaining of CD31,α-SMA+, F4/80 and CD206 (n = 3). RESULTS: On days 4, 7, and 10, the wound healing rate of the control group was significantly higher than that of the BR group. In the histological analysis, evident inflammatory infiltration, severe collagen denaturation in the BR group. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that the IL-17 pathway was enriched and related genes were up-regulated in the heat map. Immunostaining and transcriptional analyses revealed that angiogenesis and fibroblast were enhanced in the control group, fewer CD206-positive M2 macrophages and higher levels of inflammatory infiltration in the BR group. CONCLUSIONS: Brown adipose tissue may reduce inflammatory signaling in burn wounds by increasing the IL-17A-HIF1α axis and driving M2 macrophage polarization.

2.
Adv Healthc Mater ; : e2400016, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39285803

RESUMEN

Topology and bioactive molecules are crucial for stimulating cellular and tissue functions. To regulate the chronic wound microenvironment, mono-assembly technology is employed to fabricate a radial egg white hydrogel loaded with lyophilized adipose tissue-extracellular vesicles (radial EWH@L-EVs). The radial architecture not only significantly modified the gene expression of functional cells, but also achieved directional and controlled release kinetics of L-EVs. Through the synergy of topographical and inherent bioactive cues, radial EWH@L-EVs effectively reduced intracellular oxidative stress and promoted the polarization of macrophages toward an anti-inflammatory phenotype during the inflammatory phase. Afterward, radial EWH@L-EVs facilitated the centripetal migration and proliferation of fibroblasts and endothelial cells as the wound transitioned to the proliferative phase. During the latter remodeling phase, radial EWH@L-EVs accelerated the regeneration of granulation tissue, angiogenesis, and collagen deposition, thereby promoting the reorganization chronic wound. Compared with the gold standard collagen scaffold, radial EWH@L-EVs actively accommodated the microenvironment via various functions throughout all stages of diabetic wound healing. This can be attributed to the orientation of topological structures and bioactive molecules, which should be considered of utmost importance in tissue engineering.

3.
Int J Biol Macromol ; : 135598, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39276878

RESUMEN

This study proposed a novel extraction method for soy protein isolate, which involved solid-state fermentation of high-temperature soybean meal. The proteinases secreted by microorganisms acted on the high-temperature soybean meal, making the SPI easier to extract. The study concludes that Bacillus amyloliquefaciens subsp. plantarum CICC 10265 could be used for solid-state fermentation of soybean meal, and the fermentation effect was good, with a yield of 41.91 % for SPI. Compared to the direct extraction of SPI from high-temperature soybean meal, the yield had increased by 130.19 %. Meanwhile, we also conducted research on the losses during the SPI extraction process. Through experiments, the study identified the patterns of protease activity changes and microbial colony growth during solid-state fermentation of soybean meal by Bacillus amyloliquefaciens subsp. plantarum CICC 10265. It was concluded that extracting SPI after 8 h of fermentation is more suitable. The experimental results indicated that the total amino acid content of SPI extracted from fermented soybean meal was 2.1 % higher compared to SPI extracted from low-temperature soybean meal. The extracted SPI also met the microbial standards.

4.
Artículo en Inglés | MEDLINE | ID: mdl-39255152

RESUMEN

With eye tracking finding widespread utility in augmented reality and virtual reality headsets, eye gaze has the potential to recognize users' visual tasks and adaptively adjust virtual content displays, thereby enhancing the intelligence of these headsets. However, current studies on visual task recognition often focus on scene-specific tasks, like copying tasks for office environments, which lack applicability to new scenarios, e.g., museums. In this paper, we propose four scene-agnostic task types for facilitating task type recognition across a broader range of scenarios. We present a new dataset that includes eye and head movement data recorded from 20 participants while they engaged in four task types across 15 360-degree VR videos. Using this dataset, we propose an egocentric gaze-aware task type recognition method, TRCLP, which achieves promising results. Additionally, we illustrate the practical applications of task type recognition with three examples. Our work offers valuable insights for content developers in designing task-aware intelligent applications. Our dataset and source code are available at zhimin-wang.github.io/TaskTypeRecognition.html.

5.
J Transl Med ; 22(1): 839, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39267173

RESUMEN

BACKGROUND: Myocardial fibrosis, a hallmark of heart disease, is closely associated with macrophages, yet the genetic pathophysiology remains incompletely understood. In this study, we utilized integrated single-cell transcriptomics and bulk RNA-seq analysis to investigate the relationship between macrophages and myocardial fibrosis across omics integration. METHODS: We examined and curated existing single-cell data from dilated cardiomyopathy (DCM), ischemic cardiomyopathy (ICM), myocardial infarction (MI), and heart failure (HF), and analyzed the integrated data using cell communication, transcription factor identification, high dimensional weighted gene co-expression network analysis (hdWGCNA), and functional enrichment to elucidate the drivers of macrophage polarization and the macrophage-to-myofibroblast transition (MMT). Additionally, we assessed the accuracy of single-cell data from the perspective of driving factors, cell typing, anti-fibrosis performance of left ventricular assist device (LVAD). Candidate drugs were screened using L1000FWD. RESULTS: All four heart diseases exhibit myocardial fibrosis, with only MI showing an increase in macrophage proportions. Macrophages participate in myocardial fibrosis through various fibrogenic molecules, especially evident in DCM and MI. Abnormal RNA metabolism and dysregulated transcription are significant drivers of macrophage-mediated fibrosis. Furthermore, profibrotic macrophages exhibit M1 polarization and increased MMT. In HF patients, those responding to LVAD therapy showed a significant decrease in driver gene expression, M1 polarization, and MMT. Drug repurposing identified cinobufagin as a potential therapeutic agent. CONCLUSION: Using integrated single-cell transcriptomics, we identified the drivers of macrophage-mediated myocardial fibrosis in four heart diseases and confirmed the therapeutic effect of LVAD on improving HF with single-cell accuracy, providing novel insights into the diagnosis and treatment of myocardial fibrosis.


Asunto(s)
Fibrosis , Cardiopatías , Macrófagos , Humanos , Macrófagos/metabolismo , Cardiopatías/genética , Cardiopatías/patología , Análisis de la Célula Individual , Redes Reguladoras de Genes , Miocardio/patología , Regulación de la Expresión Génica , Genómica , Perfilación de la Expresión Génica
6.
Front Surg ; 11: 1457593, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39247703

RESUMEN

Background: The application of autologous fat transplantation in facial lesions of patients with localized scleroderma (LoS) has been reported in recent years. Objective: The authors report a case of worsening of active localized scleroderma after autologous fat transplantation. Methods: A man presented with neck and facial skin atrophy and pigmentation with a history of LoS. Appearing 1.5 years ago, the lesion had progressively grown in size and shape. Consent was obtained after the patient was informed of the possible surgical risks during the active phase of the disease. He underwent autologous fat grafting into the right cheek with about 30 ml Coleman fat graft. Results: Skin dyspigmentation and atrophy progressively deteriorated 1 month into therapy, with slightly increased erythema and enlargement of the lesion. Six months after the therapy, the localized scleroderma-related score worsened. Limitations: There are different factors, such as that systemic medications could affect the treatment of localized scleroderma by autologous fat transplantation. Meanwhile, considering the limitation of the 6-month follow-up period, obtaining long-term follow-up data is necessary to evaluate sustained outcomes and potential complications. Conclusion: More clinical research is needed to determine the time interval between disease inactivity and the application of any surgical procedures to avoid reactivation.

7.
Small ; : e2401551, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39109958

RESUMEN

Wound healing is a dynamic process involving the timely transition of organized phases. However, infected wounds often experience prolonged inflammation due to microbial overload. Thus, addressing the viable treatment needs across different healing stages is a critical challenge in wound management. Herein, a novel core-shell microneedle (CSMN) patch is designed for the sequential delivery of tannic acid-magnesium (TA-Mg) complexes and extracellular vesicles from Lactobacillus druckerii (LDEVs). Upon application to infected sites, CSMN@TA-Mg/LDEV releases TA-Mg first to counteract pathogenic overload and reduce reactive oxygen species (ROS), aiding the transition to proliferative phase. Subsequently, the sustained release of LDEVs enhances the activities of keratinocytes and fibroblasts, promotes vascularization, and modulates the collagen deposition. Notably, dynamic track of microbial composition demonstrates that CSMN@TA-Mg/LDEV can both inhibit the aggressive pathogen and increase the microbial diversity at wound sites. Functional analysis further highlights the potential of CSMN@TA-Mg/LDEV in facilitating wound healing and skin barrier restoration. Moreover, it is confirmed that CSMN@TA-Mg/LDEV can accelerate wound closure and improve post-recovery skin quality in the murine infected wound. Conclusively, this innovative CSMN patch offers a rapid and high-quality alternative treatment for infected wounds and emphasizes the significance of microbial homeostasis.

8.
Aesthetic Plast Surg ; 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39191922

RESUMEN

INTRODUCTION: Large-volume fat grafting is emerging as a promising technique in plastic and reconstructive surgery. However, the unpredictable graft volume retention rate remains a critical challenge. To address this issue, we need a profound understanding of the survival mechanisms following large-volume fat transplantation. This review summarizes known survival mechanisms and strategies to enhance graft retention. METHODS: This review comprehensively examines the current literature on the survival mechanisms and retention strategies in large-volume fat grafting. A thorough literature search was conducted using PubMed, Medline and Google Scholar databases, focusing on studies published from 2009 to 2023. CONCLUSION: In the current research on fat survival mechanisms, few have focused on large-volume fat grafting. This review provides an overview of the survival mechanisms specific to large-volume fat grafting and identifies a survival pattern distinct from that of small-volume fat grafting. Additionally, we have summarized existing strategies to improve graft retention across five stages (harvesting, processing, enrichment, grafting and post-graft care), analyzed their advantages and disadvantages and identified some of the most promising strategies. LEVEL OF EVIDENCE IV: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors   www.springer.com/00266.

9.
ACS Nano ; 18(34): 23508-23517, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39137306

RESUMEN

Two-dimensional ferromagnetic/antiferromagnetic (2D-FM/AFM) heterostructures are of great significance to realize the application of spintronic devices such as miniaturization, low power consumption, and high-density information storage. However, traditional mechanical stacking can easily damage the crystal quality or cause chemical contamination residues for 2D materials, which can result in weak interface coupling and difficulty in device regulation. Chemical vapor deposition (CVD) is an effective way to achieve a high-quality heterostructure interface. Herein, high-quality interface 2D-FM/AFM Cr7Te8/MnTe vertical heterostructures were successfully synthesized via a one-pot CVD method. Moreover, the atomic-scale structural scanning transmission electron microscope (STEM) characterization shows that the interface of the vertical heterostructure is clear and flat without an excess interface layer. Compared to the parent Cr7Te8, the coercivity (HC) of the high-quality interface Cr7Te8/MnTe heterostructure is significantly reduced as the thickness of MnTe increases, with a maximum decrease of 74.5% when the thickness of the MnTe nanosheet is around 30 nm. Additionally, the HC of the Cr7Te8/MnTe heterostructure can also be regulated by applying a gate voltage, and the HC increases or decreases with increasing positive or negative gate voltages. Thus, the effective regulation of HC is essential to improving the performance of advanced spintronic devices (e.g., MRAM and magnetic sensors). Our work will provide ideas for spin controlling and device application of 2D-FM/AFM heterostructures.

10.
FASEB J ; 38(16): e23879, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39162663

RESUMEN

Both lymphatic vessels and macrophages are key factors influencing the inflammatory response. During the inflammatory response, lymphatic vessels undergo dilation and growth, playing a beneficial role in alleviating inflammation by facilitating the drainage of exudate, inflammatory mediators, and leukocytes. Consequently, the promotion of lymphangiogenesis has emerged as a novel therapeutic approach to treating inflammation. Macrophages play a crucial role in promoting lymphangiogenesis by secreting several pro-lymphatic growth factors, including vascular endothelial growth factor (VEGF)-C, and undergoing transdifferentiation into lymphatic endothelial cell progenitors (LECP), which integrate into newly formed lymphatic vessels. Macrophages exhibit heterogeneity and perform diverse functions based on their phenotypes. The regulation of macrophage polarization is crucial in inflammatory responses. Notably, macrophages promote lymphangiogenesis, while lymphatic vessels, in turn, serve as a conduit for macrophages to drain out inflamed tissue and also affect macrophage polarization. Thus, there is an interactive relationship between them. In this review, we discuss current work on the effects of macrophages on lymphangiogenesis as well as lymphatic vessel recruitment of macrophages and regulation of macrophage polarization. Furthermore, we explore the roles of lymphatic vessels and macrophages in various inflammation-related diseases, emphasizing potential therapeutic targets within the context of lymphatic-macrophage interactions.


Asunto(s)
Inflamación , Linfangiogénesis , Vasos Linfáticos , Macrófagos , Macrófagos/inmunología , Macrófagos/metabolismo , Vasos Linfáticos/metabolismo , Vasos Linfáticos/patología , Humanos , Inflamación/metabolismo , Inflamación/patología , Animales , Linfangiogénesis/fisiología , Factor C de Crecimiento Endotelial Vascular/metabolismo
11.
J Gene Med ; 26(8): e3724, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39107869

RESUMEN

BACKGROUND: New targeted drugs about angiogenesis could develop the treatment of glioma. We aimed to explore the role of phosducin like 3 (PDCL3) in angiogenesis of glioma. MATERIALS AND METHODS: RNA sequencing data and matched clinical data were downloaded from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) databases. To screen for the reliable genes with the filtering analyses, survival, multivariate Cox, receiver operating characteristic (ROC) curve filtration, and clinical correlation analyses were performed. The PDCL3 gene was validated by immunohistochemistry as a reliable gene for further analysis. Then we used the combined data of TCGA and Genotype-Tissue Expression from UCSC to detect the differential gene expression of PDCL3. Related signal pathways in glioma were explored by the gene set enrichment analysis and co-expression analysis. Lastly, we performed in vitro experiments to verify the gene functions and related mechanisms. RESULTS: The three filtering analyses and immunostaining indicated that the expression of PDCL3 in glioma tissues was higher than the normal tissues. Gene function analysis showed that PDCL3 activated the vascular endothelial growth factor (VEGF) signal pathway, and its mechanism was related to pathways in cancer, like NOD like receptor signaling pathway, the RIG-I like receptor signaling pathway and the P53 signaling pathway by MAPK/AKT in gliomas. This suggested that the proliferation, migration and invasion of glioma cells might be inhibited by the downregulation of PDCL3 in vitro, which may be related to the activation of VEGF signaling pathway. CONCLUSION: We demonstrated that PDCL3 could function as an independent adverse prognostic marker in glioma. Its pro-oncogenic mechanism may be related to the VEGF signaling pathway.


Asunto(s)
Biomarcadores de Tumor , Regulación Neoplásica de la Expresión Génica , Glioma , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular , Femenino , Humanos , Masculino , Persona de Mediana Edad , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Perfilación de la Expresión Génica , Glioma/genética , Glioma/metabolismo , Glioma/patología , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Pronóstico , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética
12.
Am J Clin Nutr ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39147199

RESUMEN

BACKGROUND: Spot urine collection offers a convenient alternative to the more cumbersome 24-h urine collection. However, the widely recognized estimation models, such as Tanaka and International Cooperative Study on Salt, Other Factors, and Blood Pressure (INTERSALT), have not been adequately adapted for widespread use in the general Chinese population. OBJECTIVES: This study was designed to evaluate the precision of the Tanaka and INTERSALT calibration models, alongside a locally Zhejiang Province-formulated model, in predicting 24-h urinary sodium (24-hUNa) excretion among the Chinese population. METHODS: The study comprised 1424 participants, aged 18-69 y, who provided both comprehensive 24-h urine and fasting morning urine samples. The researchers assessed the accuracy of the measured 24-hUNa against the estimates obtained from the Tanaka, INTERSALT, and Zhejiang models. This evaluation was conducted at both population and individual levels, employing a range of statistical techniques, including bias analysis, correlation coefficients, intraclass correlation coefficients, receiver operating characteristic curves, Bland-Altman plots, as well as relative and absolute difference calculations, and misclassification rates. RESULTS: The measured average 24-hUNa excretion was found to be 165.7 ± 71.5 mmol/24-h. Notably, there was a significant deviation between the estimated and measured values for the Tanaka-adjusted model [-11.7 mmol, 95% confidence interval (CI): -16.7, -6.7 mmol/24-h], indicating a statistically significant difference. In contrast, the deviations for the INTERSALT-adjusted model (0.6 mmol, 95% CI: -4.2, 5.4 mmol/24-h) and the Zhejiang model (0.2 mmol, 95% CI: -4.6, 5.0 mmol/24-h) were nonsignificant. The correlation coefficients for the models were 0.303, 0.398, and 0.391, respectively, with the INTERSALT-adjusted and Zhejiang models showing superior performance at the population level. CONCLUSIONS: The 3 evaluation models may serve as effective, low-burden alternatives for assessing urinary sodium levels in the population. However, to enhance the accuracy and reliability of predictions at the individual level, further repeated measurements are necessary to minimize measurement errors and augment the validity of the estimations.

13.
Chem Sci ; 15(30): 12086-12097, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39092116

RESUMEN

Hypoxia featured in malignant tumors and the short lifespan of photo-induced reactive oxygen species (ROS) are two major issues that limit the efficiency of photodynamic therapy (PDT) in oncotherapy. Developing efficient type-I photosensitizers with long-term ˙OH generation ability provides a possible solution. Herein, a semiconducting polymer-based photosensitizer PCPDTBT was found to generate 1O2, ˙OH, and H2O2 through type-I/II PDT paths. After encapsulation within a mesoporous silica matrix, the NIR-II fluorescence and ROS generation are enhanced by 3-4 times compared with the traditional phase transfer method, which can be attributed to the excited-state lifetime being prolonged by one order of magnitude, resulting from restricted nonradiative decay channels, as confirmed by femtosecond spectroscopy. Notably, H2O2 production reaches 15.8 µM min-1 under a 730 nm laser (80 mW cm-2). Further adsorption of Fe2+ ions on mesoporous silica not only improves the loading capacity of the chemotherapy drug doxorubicin but also triggers a Fenton reaction with photo-generated H2O2 in situ to produce ˙OH continuously after the termination of laser irradiation. Thus, semiconducting polymer-based nanocomposites enables NIR-II fluorescence imaging guided persistent PDT under hypoxic conditions. This work provides a promising paradigm to fabricate persistent photodynamic therapy platforms for hypoxia-tolerant phototheranostics.

14.
Front Endocrinol (Lausanne) ; 15: 1415459, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39135624

RESUMEN

Objectives: This study aimed to explore the synergistic interaction effect between hyperuricemia and hypertension towards chronic kidney disease in patients with type 2 diabetes. Methods: This research originates from a cross-sectional study performed in Zhejiang Province, Eastern China, between March and November 2018. The correlation between serum uric acid levels and the risk of chronic kidney disease was assessed using a restricted cubic spline model. An unconditional multivariable logistic regression model, along with an interaction table, was utilized to explore the potential interaction effect of hyperuricemia and hypertension towards chronic kidney disease. Results: 1,756 patients with type 2 diabetes were included in this study, the prevalence of chronic kidney disease (CKD) was 27.62% in this population. A U-shaped non-linear pattern emerged correlating serum uric acid (SUA) levels and CKD risk, indicating that both low and high SUA levels were linked to an increased CKD risk. This risk achieved its lowest point (nadir) at SUA approximately equals to 285µmol/L (p for trend <0.05). Once adjustments for age, gender, education level, abnormal fasting plasma glucose (FPG), abnormal hemoglobin A1c (HbA1c), abnormal total cholesterol (TC), abnormal high-density lipoprotein cholesterol (HDL-C), alcohol consumption and duration of diabetes were factored in, it was found that patients with both hyperuricemia and hypertension demonstrated a 5.42-fold (95% CI: 3.72-7.90) increased CKD risk compared to the reference group. The additive interaction between hyperuricemia and hypertension was statistically significant, as manifested by the following values: a relative excess risk due to interaction (RERI) of 2.57 (95% CI: 0.71-4.71), an attributable proportion due to interaction (AP) of 0.47 (95% CI: 0.14-0.64), and a synergy index (SI) of 2.39 (95% CI: 1.24-4.58). In contrast, there was no significant interaction effect in multiplicative scale. Conclusion: Hyperuricemia and hypertension may contribute additively to CKD, beyond their isolated impacts. Evaluating the risk of CKD in type 2 diabetes patients necessitates considering this potential interaction.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hipertensión , Hiperuricemia , Insuficiencia Renal Crónica , Ácido Úrico , Humanos , Hiperuricemia/epidemiología , Hiperuricemia/sangre , Hiperuricemia/complicaciones , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/sangre , Estudios Transversales , Masculino , Femenino , Insuficiencia Renal Crónica/epidemiología , Insuficiencia Renal Crónica/sangre , Insuficiencia Renal Crónica/complicaciones , Persona de Mediana Edad , Hipertensión/epidemiología , Hipertensión/sangre , Hipertensión/complicaciones , China/epidemiología , Anciano , Ácido Úrico/sangre , Factores de Riesgo , Adulto , Prevalencia
15.
Phytother Res ; 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39180344

RESUMEN

Intracranial aneurysm (IA) is a common cerebrovascular disease. Immune system disorders and endothelial dysfunction are essential mechanisms of its pathogenesis. This study aims to explore the therapeutic effect and mechanism of Geniposide (Gen) on IA, which has a protective impact on endothelial cells and cardiovascular and cerebrovascular diseases. IA mouse models were administered intraperitoneal injections of geniposide for 2 weeks following elastase injection into the right basal ganglia of the brain for intervention. The efficacy of Gen in treating IA was evaluated through pathological testing and transcriptome sequencing analysis of Willis ring vascular tissue. The primary mechanism of action was linked to the expression of GSK3ß in Th17 cells. The percentage of splenic Th17 cell differentiation in IA mice was significantly inhibited by Gen. GSK3ß/STAT3, and other pathway protein expression levels were also significantly inhibited by Gen. Additionally, TNF-α and IL-23 cytokine contents were significantly downregulated after Gen treatment. These results indicated that Gen significantly inhibited the percentage of Th17 cell differentiation, an effect that was reversed upon overexpression of the GSK3B gene. Furthermore, Gen-treated, Th17 differentiation-inducing cell-conditioned medium significantly up-regulated the expression of tight junction proteins ZO-1, Occludin, and Claudin-5 in murine aortic endothelial cells. Administering the GSK3ß inhibitor Tideglusib to IA mice alleviated the severity of IA disease pathology and up-regulated aortic tight junction protein expression. In conclusion, Gen inhibits Th17 cell differentiation through GSK3ß, which reduces endothelial cell injury and up-regulates tight junction protein expression.

16.
Zhonghua Nan Ke Xue ; 30(4): 300-305, 2024 Apr.
Artículo en Chino | MEDLINE | ID: mdl-39210415

RESUMEN

OBJECTIVE: To investigate the application value of ultrasound technology in transurethral enucleation and resection of the prostate (TUERP). METHODS: This study included 78 BPH patients admitted in our hospital from June 2021 to June 2023, aged 70.68±8.63 years and with the indication of surgery. We randomly divided them into two groups to receive TUERP (the control group, n = 39) and ultrasound-assisted TUERP (the US-TUERP group, n = 39). We statistically analyzed and compared the relevant parameters obtained before and after operation between the two groups. RESULTS: No statistically significant differences were observed in the operation time and bladder irrigation time between the two groups (P > 0.05). More glandular tissues were removed but less intraoperative bleeding and fewer perioperative complications occurred in the US-TUERP group than in the control. Compared with the baseline, IPSS, postvoid residual urine volume (PVR), quality of life score (QOL) and maximum urinary flow rate (Qmax) were significantly improved in both groups at 1 and 3 months after surgery, even more significantly in the US-TUERP than in the control group (P < 0.05). CONCLUSION: US-TUERP helps achieve complete resection of the hyperplastic prostatic tissue along the surgical capsule at the anatomical level, with a higher safety, fewer perioperative complications, and better therapeutic effects.


Asunto(s)
Próstata , Hiperplasia Prostática , Resección Transuretral de la Próstata , Ultrasonografía , Humanos , Masculino , Resección Transuretral de la Próstata/métodos , Anciano , Hiperplasia Prostática/cirugía , Próstata/cirugía , Calidad de Vida , Resultado del Tratamiento , Tempo Operativo
17.
Plants (Basel) ; 13(16)2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39204660

RESUMEN

Salt stress represses the growth and development of plants that mainly depend on the continual propagation and differentiation of stem cells. WUSCHEL (WUS)/WUSCHEL-RELATED HOMEOBOX (WOX) family proteins determine stem cell fate in plants under ever-changing environments. It is not yet known how plant stem cell homeostasis is regulated under salt stress. Methionine synthase catalyzes the formation of methionine by methylating homocysteine in the one-carbon metabolism pathway. In this work, we investigated the role of Arabidopsis METHIONINE SYNTHASE 2 (AtMS2) in stem cell homeostasis under salt stress. The results showed that AtMS2 represses the stem cell maintenance of Arabidopsis in response to salt stress. Under normal growth conditions, AtMS2 is mainly localized in the cytoplasm. However, under salt stress, it exhibits significant accumulation in the nucleus. AtMS2 interacts with the WUS/WOX protein, and, together, they repress WUS/WOX expression by binding to its promoter. The mutation in AtMS2 resulted in enhanced salt tolerance. Therefore, AtMS2 might act as a key negative regulator to repress the stem cell maintenance and growth of Arabidopsis under salt stress.

18.
CNS Neurosci Ther ; 30(9): e70022, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39215401

RESUMEN

BACKGROUND: Parkinson's disease (PD) is a prevalent neurodegenerative disorder characterized by dopaminergic neuron degeneration and diverse motor and nonmotor symptoms. Early diagnosis and intervention are crucial but challenging due to reliance on clinical presentation. Recent research suggests potential biomarkers for early detection, including plasma netrin-1 (NTN-1), a protein implicated in neuronal survival. METHODS: This cross-sectional study recruited 105 PD patients and 65 healthy controls, assessing plasma NTN-1 levels and correlating them with clinical characteristics. Statistical analyses explored associations between NTN-1 levels and PD symptoms, considering demographic factors. RESULTS: PD patients exhibited significantly lower plasma NTN-1 levels compared to controls. NTN-1 demonstrated moderate potential as a PD biomarker. Positive correlations were found between NTN-1 levels and motor, depression, and cognitive symptoms. Multiple regression analysis revealed disease duration and NTN-1 levels as key factors influencing symptom severity. Gender also impacted symptom scores. CONCLUSION: Reduced plasma NTN-1 levels correlate with PD severity, suggesting its potential as a biomarker. However, further research is needed to elucidate the roles of NTN-1 in PD pathophysiology and validate its diagnostic and therapeutic implications. Understanding the involvement of NTN-1 may lead to personalized management strategies for PD.


Asunto(s)
Biomarcadores , Netrina-1 , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/sangre , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/complicaciones , Masculino , Femenino , Netrina-1/sangre , Anciano , Estudios Transversales , Persona de Mediana Edad , Biomarcadores/sangre , Depresión/sangre , Depresión/etiología , Depresión/diagnóstico
19.
EFORT Open Rev ; 9(8): 712-722, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39087516

RESUMEN

Ferroptosis is a novel form of programmed cell death, distinguished from apoptosis, autophagy, and programmed necrosis and has received much attention since it was defined in 2012. Ferroptotic cells physiologically exhibit iron metabolism dysregulation, oxidative stress, and lipid peroxidation. Morphologically, they show plasma membrane disruption, cytoplasmic swelling, and mitochondrial condensation. Osteoporosis is taken more and more seriously as the proportion of the aging population continues to increase globally. Interestingly, ferroptosis has been demonstrated to be involved in the development and progression of osteoporosis in many extant studies. The review summarizes iron metabolism, lipid peroxidation, and the different regulatory signals in ferroptosis. Changes in signaling mechanisms within osteoblasts, osteoclasts, and osteocytes after ferroptosis occur are explained here. Studies showed ferroptosis play an important role in different osteoporosis models (diabetes osteoporosis, postmenopausal osteoporosis, glucocorticoid-induced osteoporosis). Inhibitors and EC (Exos) targeting ferroptosis could ameliorate bone loss in osteoporotic mice by protecting cells against lipid peroxidation. Shortly, we hope that more effective and appropriate clinical therapy means will be utilized in the treatment of osteoporosis.

20.
Biomedicines ; 12(8)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39200097

RESUMEN

Chemotherapy is an important factor leading to male infertility. It is crucial to discover safe and effective treatments to prevent male reproductive injury caused by chemotherapy. The Ganoderma lucidum polysaccharide peptide (GLPP) has multiple pharmacological activities. The purpose of this study was to determine whether GLPP could protect the male sperm production from chemotherapeutic injury using a mouse model, with testicular damage induced by cyclophosphamide (CP). CP (50 mg/kg/day) was injected intraperitoneally into male ICR mice gavaged with different doses of GLPP at certain spermatogenic stages. The experimental results showed that GLPP alleviated the CP-induced reduction in reproductive organ coefficients and sperm parameters and reduced the morphological damage of testicular tissues in a dose-dependent manner. GLPP significantly improved the reproductive index, sperm-related parameters, sex hormone levels, and histological testis architecture at different spermatogenic stages. Furthermore, GLPP significantly increased superoxide dismutase (SOD), glutathione (GSH), catalase (CAT), Nrf2, and HO-1, and decreased malondialdehyde (MDA) and Keap-1 in the testicular tissue, indicating reduced oxidative stress. In addition, GLPP limited CP-induced apoptosis via a reduction in Bax expression and increase in Bcl-2 expression. This study suggests that GLPP plays a protective role in spermatogenesis by reducing chemotherapeutic injury and might be developed into drug for male patients receiving chemotherapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA