RESUMEN
Salmonella spp. is one of the most common foodborne infectious pathogen. This study aimed to develop a real-time nucleic acid sequence-based amplification (NASBA) assay for detecting Salmonella in foods. Primers and a molecular beacon targeting the Salmonella-specific xcd gene were designed for mRNA transcription, and 48 Salmonella and 18 non-Salmonella strains were examined. The assay showed a high specificity and low detection limit for Salmonella (7 × 10-1 CFU/mL) after 12 h of pre-enrichment. Importantly, it could detect viable cells. Additionally, the efficacy of the NASBA assay was examined in the presence of pork background microbiota; it could detect Salmonella cells at 9.5 × 103 CFU/mL. Lastly, it was successfully used to detect Salmonella in pork, beef, and milk, and its detection limit was as low as 10 CFU/25 g (mL). The real-time NASBA assay developed in this study may be useful for rapid, specific, and sensitive detection of Salmonella in food of animal origin.
Asunto(s)
Carne/microbiología , Leche/microbiología , Salmonella/aislamiento & purificación , Replicación de Secuencia Autosostenida/métodos , Animales , Bovinos , Microbiología de Alimentos , Salmonella/clasificación , Salmonella/genética , PorcinosRESUMEN
In the previous study, we used genome shuffling to improve fengycin production of the original strain Bacillus amyloliquefaciens ES-2-4. After two rounds of genome shuffling, a high-yield recombinant FMB72 strain that exhibited 8.30-fold increase in fengycin production was obtained. In this study, comparative proteomic analysis of the parental ES-2-4 and genome-shuffled FMB72 strains was conducted to examine the differentially expressed proteins. In the shuffled strain FMB72, 50 differently expressed spots (p<0.05) were selected to be excised and analyzed using Matrix-Assisted Laser Desorption/Ionization Time of Flight/Time of Flight Mass Spectrometry, and finally 44 protein spots were confidently identified according to NCBI database. According to clusters of orthologous groups (COG) functional category analysis and related references, the differentially expressed proteins could be classified into several functional categories, including proteins involved in metabolism, energy generation and conversion, DNA replication, transcription, translation, ribosomal structure and biogenesis, cell motility and secretion, signal transduction mechanisms, general function prediction. Of the 44 identified proteins, signaling proteins ComA and Spo0A may positively regulate fengycin synthesis at transcriptional level. Taken together, the present study will be informative for exploring the exact roles of ComA and Spo0A in fengycin synthesis and explaining the molecular mechanism of fengycin synthesis.
Asunto(s)
Bacillus amyloliquefaciens/genética , Bacillus amyloliquefaciens/metabolismo , Proteínas Bacterianas/metabolismo , Lipopéptidos/biosíntesis , Bacillus amyloliquefaciens/química , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Barajamiento de ADN , Genoma Bacteriano , Proteómica , Espectrometría de Masa por Láser de Matriz Asistida de Ionización DesorciónRESUMEN
In the previous study, we used genome shuffling to improve fengycin production of the original strain Bacillus amyloliquefaciens ES-24. After two rounds of genome shuffling, a high-yield recombinant FMB72 strain that exhibited 8.30-fold increase in fengycin production was obtained. In this study, comparative proteomic analysis of the parental ES-24 and genome-shuffled FMB72 strains was conducted to examine the differentially expressed proteins. In the shuffled strain FMB72, 50 differently expressed spots (p < 0.05) were selected to be excised and analyzed using Matrix-Assisted Laser Desorption/Ionization Time of Flight/Time of Flight Mass Spectrometry, and finally 44 protein spots were confidently identified according to NCBI database. According to clusters of orthologous groups (COG) functional category analysis and related references, the differentially expressed proteins could be classified into several functional categories, including proteins involved in metabolism, energy generation and conversion, DNA replication, transcription, translation, ribosomal structure and biogenesis, cell motility and secretion, signal transduction mechanisms, general function prediction. Of the 44 identified proteins, signaling proteins ComA and Spo0A may positively regulate fengycin synthesis at transcriptional level. Taken together, the present study will be informative for exploring the exact roles of ComA and Spo0A in fengycin synthesis and explaining the molecular mechanism of fengycin synthesis.(AU)
RESUMEN
Abstract In the previous study, we used genome shuffling to improve fengycin production of the original strain Bacillus amyloliquefaciens ES-2-4. After two rounds of genome shuffling, a high-yield recombinant FMB72 strain that exhibited 8.30-fold increase in fengycin production was obtained. In this study, comparative proteomic analysis of the parental ES-2-4 and genome-shuffled FMB72 strains was conducted to examine the differentially expressed proteins. In the shuffled strain FMB72, 50 differently expressed spots (p < 0.05) were selected to be excised and analyzed using Matrix-Assisted Laser Desorption/Ionization Time of Flight/Time of Flight Mass Spectrometry, and finally 44 protein spots were confidently identified according to NCBI database. According to clusters of orthologous groups (COG) functional category analysis and related references, the differentially expressed proteins could be classified into several functional categories, including proteins involved in metabolism, energy generation and conversion, DNA replication, transcription, translation, ribosomal structure and biogenesis, cell motility and secretion, signal transduction mechanisms, general function prediction. Of the 44 identified proteins, signaling proteins ComA and Spo0A may positively regulate fengycin synthesis at transcriptional level. Taken together, the present study will be informative for exploring the exact roles of ComA and Spo0A in fengycin synthesis and explaining the molecular mechanism of fengycin synthesis.
Asunto(s)
Proteínas Bacterianas/metabolismo , Lipopéptidos/biosíntesis , Bacillus amyloliquefaciens/genética , Bacillus amyloliquefaciens/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Genoma Bacteriano , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Barajamiento de ADN , Proteómica , Bacillus amyloliquefaciens/químicaRESUMEN
Abstract In the previous study, we used genome shuffling to improve fengycin production of the original strain Bacillus amyloliquefaciens ES-24. After two rounds of genome shuffling, a high-yield recombinant FMB72 strain that exhibited 8.30-fold increase in fengycin production was obtained. In this study, comparative proteomic analysis of the parental ES-24 and genome-shuffled FMB72 strains was conducted to examine the differentially expressed proteins. In the shuffled strain FMB72, 50 differently expressed spots (p 0.05) were selected to be excised and analyzed using Matrix-Assisted Laser Desorption/Ionization Time of Flight/Time of Flight Mass Spectrometry, and finally 44 protein spots were confidently identified according to NCBI database. According to clusters of orthologous groups (COG) functional category analysis and related references, the differentially expressed proteins could be classified into several functional categories, including proteins involved in metabolism, energy generation and conversion, DNA replication, transcription, translation, ribosomal structure and biogenesis, cell motility and secretion, signal transduction mechanisms, general function prediction. Of the 44 identified proteins, signaling proteins ComA and Spo0A may positively regulate fengycin synthesis at transcriptional level. Taken together, the present study will be informative for exploring the exact roles of ComA and Spo0A in fengycin synthesis and explaining the molecular mechanism of fengycin synthesis.
RESUMEN
Bacillus amyloliquefaciens fmb50 produces a high yield of surfactin, a lipopeptide-type biosurfactant that has been widely studied and has potential applications in many fields. A foam overflowing culture has been successfully used in the combined production-enrichment fermentation of surfactin. In this study, the agitation and aeration rates were found to have relationships with foam formation and surfactin enrichment. A maximum surfactin concentration of 4.7g/l of foam was obtained after 21h of culture with an agitation rate of 150rpm and an aeration rate of 1vvm in fed-batch culture. By controlling the foam overflow rate (fout) of a fed-batch culture, surfactin concentration in the foam was continuously maintained above 4g/l.
Asunto(s)
Técnicas de Cultivo Celular por Lotes/métodos , Reactores Biológicos , Fermentación , Microbiología Industrial/métodos , Lipopéptidos/biosíntesis , Péptidos Cíclicos/biosíntesis , Bacillus/metabolismoRESUMEN
Bacillus amyloliquefaciens fmb50 produces a high yield of surfactin, a lipopeptide-type biosurfactant that has been widely studied and has potential applications in many fields. A foam overflowing culture has been successfully used in the combined production-enrichment fermentation of surfactin. In this study, the agitation and aeration rates were found to have relationships with foam formation and surfactin enrichment. A maximum surfactin concentration of 4.7 g/l of foam was obtained after 21 h of culture with an agitation rate of 150 rpm and an aeration rate of 1 vvm in fed-batch culture. By controlling the foam overflow rate (f out) of a fed-batch culture, surfactin concentration in the foam was continuously maintained above 4 g/l.
Bacillus amyloliquefaciens fmb50 produce gran cantidad de surfactina, un biosurfactante de tipo lipopeptídico que ha sido objeto de estudios pormenorizados y tiene aplicaciones en muchos campos. El cultivo en espuma desbordante se ha utilizado con éxito en la fermentación combinada de producción-enriquecimiento de surfactina. En este estudio, se halló que las tasas de aireación y agitación tienen relación con la formación de espuma y el enriquecimiento de la surfactina. Se obtuvo una concentración máxima de surfactina de 4,7 g/l de espuma después de 21 h de cultivo con una tasa de agitación de 150 rpm y una tasa de aireación de 1 vvm en un cultivo alimentado (fed-batch). Al controlar la tasa de espuma desbordante (f out) de un cultivo fed-batch, la concentración de surfactina en la espuma se mantuvo continua por encima de 4 g/l.