Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Vet Med Sci ; 10(5): e70017, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39239721

RESUMEN

BACKGROUND: Nuciferine (NUC), a natural compound extracted from lotus leaves, has been proven to have anti-obesity effects. However, the development and application of NUC as an anti-obesity drug in dogs are hindered due to its poor water solubility and low bioavailability. OBJECTIVE: To promote the development of NUC-related products for anti-obesity in dogs, this study prepared NUC into a liposome formulation and evaluated its characteristics, pharmacokinetics in dogs, and anti-obesity effects on high-fat diet dogs. METHODS: NUC liposomes were prepared by the ethanol injection method, using NUC, egg lecithin, and ß-sitosterol as raw materials. The characteristics and release rate in vitro of liposomes were evaluated by particle size analyser and dialysis method, respectively. The pharmacokinetics in dogs after oral administration of NUC-liposomes was carried out by the high-performance liquid chromatography (HPLC) method. Moreover, we investigated the anti-obesity effect of NUC-liposomes on obese dogs fed with a high-fat diet. RESULTS: NUC-liposome was successfully prepared, with an EE of (79.31 ± 1.06)%, a particle size of (81.25 ± 3.14) nm, a zeta potential of (-18.75 ± 0.23) mV, and a PDI of 0.175 ± 0.031. The cumulative release rate in vitro of NUC from NUC-liposomes was slower than that of NUC. The T1/2 and relative bioavailability of NUC-liposomes in dogs increased, and CL reduced compared with NUC. In addition, the preventive effect of NUC-liposomes on obesity in high-fat diet dogs is stronger than that of NUC. CONCLUSIONS: The liposome formulation of NUC was conducive to improve its relative bioavailability and anti-obesity effect in dogs.


Asunto(s)
Fármacos Antiobesidad , Aporfinas , Liposomas , Obesidad , Animales , Perros , Fármacos Antiobesidad/farmacocinética , Fármacos Antiobesidad/administración & dosificación , Fármacos Antiobesidad/química , Obesidad/veterinaria , Obesidad/tratamiento farmacológico , Masculino , Aporfinas/farmacocinética , Aporfinas/química , Aporfinas/administración & dosificación , Dieta Alta en Grasa , Enfermedades de los Perros/tratamiento farmacológico , Enfermedades de los Perros/prevención & control , Femenino
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 271: 120912, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35074674

RESUMEN

Rapid detection of mercaptans in materials and the environment is of great help to material analysis and pollutant monitoring. Gold (Au) shows a high affinity to mercaptans. The coordination and steric effect of mercaptans to Au may be used for the development of new fluorescent sensors. It is possible to distinguish simple mercaptans (such as, HS-, thioglycolic acid) from glutathione (GSH) using Au as a coordinator of dye. Herein, a water-soluble fluorescent sensor of an imidazole conjugated 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) derivative (BIM) was characterized by spectroscopic methods. BIM showed a large Stokes shift and high affinity to metals. Especially, Au-combined BIM produced a new complex BIMAu showing improved fluorescence emission, which can be quenched by thioglycolic acid and sodium hydrosulfide, but less affected by GSH. The detection limit of thioglycolic acid was 0.014 µM. Both NaSH and thioglycolic acid coordinated with BIMAu, while GSH took Au3+ away from BIMAu. These results indicate that the gold coordination competition between imidazole-substituted dyes and mercaptans is a good method for the development of new fluorescence chemosensors.


Asunto(s)
Oro , Compuestos de Sulfhidrilo , Compuestos de Boro/química , Colorantes Fluorescentes/química , Imidazoles
3.
Anal Chim Acta ; 1195: 339460, 2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35090651

RESUMEN

Phthalates can penetrate the environment and enrich various aquatic organisms through the food chain, which is involved in promoting the growth of breast cancer. It is of current interest to develop new sensors for phthalates. We herein reported a hydrogen-bond competing fluorescent sensor, BANP, for the detection of dibutyl phthalate (DBP). The BANP compound was synthesized by assembling andrographolide (Andro), nitro- and cyano-substituted BODIPY dye (BCN), and polyethylene glycol derivatives (DSPE-mPEG5000). BANP was found to be a turn-on fluorescent probe for DBP in water with a detection limit of 0.13 µg/g; the DBP-water system acts as a hydrogen bond switch to turn on the fluorescence. And BANP fluorescently detected DBP in contaminated fish meat. Moreover, BANP sensed the DBP-induced growth of human breast cancer MCF-7 cells, and the release of Andro in the DBP-cultivated cancer cells inhibited the proliferation of the MCF-7 cells. Taken together, BANP is a DBP-responsive probe for sensitive DBP detection in water, cells, and fish meats. The BANP sensor may be used in both in vitro fluorescence and cellular imaging analyses. Our results show that guest-induced reassembly brings forth significant fluorescence change, which is a promising way of designing new fluorescent probes for the analysis of phthalates in the environment and food.


Asunto(s)
Ácidos Ftálicos , Animales , Dibutil Ftalato , Diterpenos , Colorantes Fluorescentes , Humanos
4.
ACS Appl Bio Mater ; 3(1): 458-465, 2020 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35019462

RESUMEN

Drug-resistant bacteria challenge the antimicrobial agents and antibacterial strategy. To develop environmental friendly smart technology for treating pathogens, we report a kind of photoactivated nano-BODIPY (BCNBA@ZIF). First BODIPY compound (BC) was synthesized by coupling phenethyl caffeate (CAPE) with brominated BODIPY through B-O bonds. Next, BC was encapsulated in ZIF-8 together with 2-nitrobenzaldehyde (o-NBA) to form photoactivated BCNBA@ZIF nanoparticles. TEM confirm the structural change of BCNBA@ZIF after illumination. BCNBA@ZIF is less toxic to cells without illumination. Under illumination of blue LED light, the BCNBA@ZIF worked as a photoacid generator initiating the damage of ZIF shell with the release of BC, metal ions, and the production of singlet oxygen for achieving multifunctional antibacterial uses. Therefore, BCNBA@ZIF is a kind of photodriven smart "Domino" agent for bacterial inhibition.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA