Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 364: 143141, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39187023

RESUMEN

The Co3O4-Ti electrodes were successfully prepared via calcination method to degrade nitrogen-containing (TNP) simulate wastewater in this reaserch. SEM and EDS were employed to analyze the morphology and element composition on Co3O4-Ti electrode, revealing the successful load of cobalt element. Then the electrochemical performance was evaluated by CV and indicated a better redox performance of electrode. Furthermore, five factors as processing time (A), electrolyte concentration (B), pH (C), initial concentration of TNP (D), and current density (E) were systematic studied in electrical treatment process. The removal rate of TN could be 77%. After the optimization work by RSM, the removal rate of TN raised up to 81% with the condition as: A of 180 min, B of 0.05 M, C of 3, D of 400 mg L-1, and E of 20 mA cm-2. The sequence of significants is: C > D > A > E > B. Mechanism analysis revealed that the entire process could be divided into two stages. In the first stage, organic nitrogen compounds were converted into inorganic nitrogen species, such as NO3-N. The oxidation and reduction would react owing to the generating of ·OH at second stage in order to turn the NO3-N into NO2-N, NH4-N or N2. The activation of ·OH on the surface of Co3O4-Ti electrode possesses the exothermic nature with transition theory. The energy calculation of 1.168 eV indicated these reactions could occur spontaneously.

2.
ACS Omega ; 8(38): 34471-34480, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37779997

RESUMEN

In this paper, with coal tar pitch as the carbon source, porous carbon (PC) was prepared by one-step carbonization. To improve the energy density of coal tar pitch-based porous carbon, MoS2@PC was prepared by a hydrothermal method on a PC substrate. The effect of MoS2 loading on the structure and electrochemical properties of the sample was studied. The results show that the specific surface area of the MoS2@PC-0.3 synthesized is 3053 m2 g-1, and the large specific surface area provides sufficient attachment sites for the storage of electrolyte ions. In the three-electrode system, the specific capacitance of MoS2@PC-0.3 at 0.5 A g-1 is 422.5 F g-1, and the magnification performance is 57.3% at 20 A g-1. After 10,000 charge/discharge cycles, the capacitance retention rate of the sample is 76.73%, with the Coulombic efficiency being 100%. In the two-electrode test system, the specific capacitance of MoS2@PC-0.3 at 0.5 A g-1 is 321.4 F g-1, with the power density and energy density being 500 W kg-1 and 44.6 Wh kg-1, respectively. At a current density of 20 A g-1, the capacitance retention rate is 87.69% after 10,000 cycles. This study greatly improves the energy density of PC as the electrode material of supercapacitors.

3.
ACS Omega ; 8(1): 804-818, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36643432

RESUMEN

Water-based superamphiphobic coatings that are environmentally friendly have attracted tremendous attention recently, but their performances are severely limited by dispersibility and mechanical durability. Herein, a dispersion of poly(tetrafluoroethylene)/SiO2@cetyltrimethoxysilane&sodium silicate-modified aluminum tripolyphosphate (PTFE/SiO2@CTMS&Na2SiO3-ATP) superamphiphobic coatings was formed by mechanical dispersion of poly(tetrafluoroethylene) emulsion (PTFE), modified silica emulsion (SiO2@CTMS), sodium silicate (Na2SiO3), and modified aluminum tripolyphosphate (modified ATP). The four kinds of emulsions were mixed together to effectively solve the dispersity of waterborne superamphiphobic coatings. Robust waterborne superamphiphobic coatings were successfully obtained by one-step spraying and curing at 310 °C for 15 min, showing strong adhesive ability (grade 1 according to the GB/T9286), high hardness (6H), superior antifouling performance, excellent impact resistance, high-temperature resistance (<415 °C), anticorrosion (immersion of strong acid and alkali for 120 h), and heat insulation. Remarkably, the prepared coating surface showed superior wear resistance, which can undergo more than 140 abrasion cycles. Moreover, the composite coating with 35.53 wt % SiO2@CTMS possesses superamphiphobic properties, with contact angles of 160 and 156° toward water and glycerol, respectively. The preparation method of superamphiphobic coatings may be expected to present a strategy for the preparation of multifunctional waterborne superamphiphobic coatings with excellent properties and a simple method.

4.
ACS Omega ; 7(27): 23342-23352, 2022 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-35847265

RESUMEN

In this paper, a series of N/O co-doped porous carbons (PCs) were designed and used to prepare coal tar pitch-based supercapacitors (SCs). The introduction of N/O species under the intervention of urea effectively improves the pseudocapacitance of PCs. The results show that the specific surface area of synthesized N3PC4-700 is 1914 m2 g-1, while the N and O contents are 1.3 and 7.2%, respectively. The unique interconnected pore structure and proper organic N/O co-doping, especially the introduction of pyridine-N and pyrrole-N, are beneficial for improving the electrochemical performance of PCs. In the three-electrode system, the specific capacitance and rate capability of N3PC4-700 are 532.5 F g-1 and 72.5% at the current densities of 0.5 and 20 A g-1, respectively. In addition, the specific capacitance of N3PC4-700 in a coin-type symmetric device is 315.5 F g-1 at 0.5 A g-1. The N3PC4-700 electrode provides an energy density of 43.8 W h kg-1 with a power density of 0.5 kW kg-1 and still maintains a value of 29.7 at 10 kW kg-1. After 10,000 charge/discharge cycles, the retention rate was as high as 96.7%. In order to obtain high-performance carbon-based SCs, the effective identification and regulation of organic N/O species is necessary.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA