Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 95 Suppl: S77-82, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21292385

RESUMEN

An experimental design methodology was applied to study the effects of temperature, pH, biomass dose, and stirring speed on copper removal from aqueous solutions by Aspergillus terreus in a biosorption batch system. To identify the effects of the main factors and their interactions on copper removal efficiency and to optimize the process, a full 2(4) factorial design with central points was performed. Four factors were studied at two levels, including stirring speed (50-150 min(-1)), temperature (30-50°C), pH (4-6) and biosorbent dose (0.01-0.175 g). The main factors observed were pH and biomass dose, along with the interactions between pH and biomass, and stirring speed. The optimal operational conditions were obtained using a response surface methodology. The adequacy of the proposed model at 99% confidence level was confirmed by its high adjusted linear coefficient of determination (R(Adj)(2)=0.9452). The best conditions for copper biosorption in the present study were: pH 6, biosorbent dose of 0.175 g, stirring speed of 50 min(-1) and temperature of 50°C. Under these conditions, the maximum predicted copper removal efficiency was 68.52% (adsorption capacity of 15.24 mg/g). The difference between the experimental and predicted copper removal efficiency at the optimal conditions was 4.8%, which implies that the model represented very well the experimental data.


Asunto(s)
Aspergillus/metabolismo , Cobre/aislamiento & purificación , Contaminantes Químicos del Agua/aislamiento & purificación , Biomasa , Concentración de Iones de Hidrógeno , Microbiología Industrial/métodos , Modelos Teóricos , Soluciones/química , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA