Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 666
Filtrar
1.
Adv Exp Med Biol ; 1457: 1-31, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39283418

RESUMEN

Coronavirus disease 2019 (COVID-19) has affected not only individual lives but also the world and global systems, both natural and human-made. Besides millions of deaths and environmental challenges, the rapid spread of the infection and its very high socioeconomic impact have affected healthcare, economic status and wealth, and mental health across the globe. To better appreciate the pandemic's influence, multidisciplinary and interdisciplinary approaches are needed. In this chapter, world-leading scientists from different backgrounds share collectively their views about the pandemic's footprint and discuss challenges that face the international community.


Asunto(s)
COVID-19 , Salud Global , Pandemias , SARS-CoV-2 , COVID-19/epidemiología , Humanos , Pandemias/prevención & control
2.
NPJ Parkinsons Dis ; 10(1): 175, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39261476

RESUMEN

Parkinson's disease (PD) has been associated with pathological neural activity within the basal ganglia. Herein, we analyzed resting-state single-neuron and local field potential (LFP) activities from people with PD who underwent awake deep brain stimulation surgery of the subthalamic nucleus (STN; n = 125) or globus pallidus internus (GPi; n = 44), and correlated rate-based and oscillatory features with UPDRSIII off-medication subscores. Rate-based single-neuron features did not correlate with PD symptoms. STN single-neuron and LFP low-beta (12-21 Hz) power and burst dynamics showed modest correlations with bradykinesia and rigidity severity, while STN spiketrain theta (4-8 Hz) power correlated modestly with tremor severity. GPi low- and high-beta (21-30 Hz) power and burst dynamics correlated moderately with bradykinesia and axial symptom severity. These findings suggest that elevated single-neuron and LFP oscillations may be linked to symptoms, though modest correlations imply that the pathophysiology of PD may extend beyond resting-state beta oscillations.

3.
IEEE J Transl Eng Health Med ; 12: 589-599, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39247846

RESUMEN

OBJECTIVE: Optimized deep brain stimulation (DBS) is fast becoming a therapy of choice for the treatment of Parkinson's disease (PD). However, the post-operative optimization (aimed at maximizing patient clinical benefits and minimizing adverse effects) of all possible DBS parameter settings using the standard-of-care clinical protocol requires numerous clinical visits, which substantially increases the time to optimization per patient (TPP), patient cost burden and limit the number of patients who can undergo DBS treatment. The TPP is further elongated in electrodes with stimulation directionality or in diseases with latency in clinical feedback. In this work, we proposed a deep learning and fMRI-based pipeline for DBS optimization that can potentially reduce the TPP from ~1 year to a few hours during a single clinical visit. METHODS AND PROCEDURES: We developed an unsupervised autoencoder (AE)-based model to extract meaningful features from 122 previously acquired blood oxygenated level dependent (BOLD) fMRI datasets from 39 a priori clinically optimized PD patients undergoing DBS therapy. The extracted features are then fed into multilayer perceptron (MLP)-based parameter classification and prediction models for rapid DBS parameter optimization. RESULTS: The AE-extracted features of optimal and non-optimal DBS were disentangled. The AE-MLP classification model yielded accuracy, precision, recall, F1 score, and combined AUC of 0.96 ± 0.04, 0.95 ± 0.07, 0.92 ± 0.07, 0.93 ± 0.06, and 0.98 respectively. Accuracies of 0.79 ± 0.04, 0.85 ± 0.04, 0.82 ± 0.05, 0.83 ± 0.05, and 0.70 ± 0.07 were obtained in the prediction of voltage, frequency, and x-y-z contact locations, respectively. CONCLUSION: The proposed AE-MLP models yielded promising results for fMRI-based DBS parameter classification and prediction, potentially facilitating rapid semi-automated DBS parameter optimization. Clinical and Translational Impact Statement-A deep learning-based pipeline for semi-automated DBS parameter optimization is presented, with the potential to significantly decrease the optimization duration per patient and patients' financial burden while increasing patient throughput.


Asunto(s)
Estimulación Encefálica Profunda , Aprendizaje Profundo , Imagen por Resonancia Magnética , Enfermedad de Parkinson , Humanos , Estimulación Encefálica Profunda/métodos , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/fisiopatología , Imagen por Resonancia Magnética/métodos , Femenino , Masculino , Persona de Mediana Edad , Anciano , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Procesamiento de Imagen Asistido por Computador/métodos
4.
J Neurosci ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39266303

RESUMEN

Low intensity transcranial focused ultrasound stimulation (TUS) is a novel technique for non-invasive brain stimulation (NIBS). TUS delivered in a theta (5Hz) burst pattern (tbTUS) induces plasticity in the human primary motor cortex (M1) for 30-60 minutes, showing promise for therapeutic development. Metaplasticity refers to activity-dependent changes in neural functions governing synaptic plasticity; depotentiation is the reversal of long-term potentiation (LTP) by a subsequent protocol with no effect alone. Metaplasticity can enhance plasticity induction and clinical efficacy of NIBS protocols. In our study, we compared four NIBS protocol combinations to investigate metaplasticity on tbTUS in humans of either sex.We delivered four interventions: 1) sham continuous theta burst stimulation with 150 pulses (cTBS150) followed by real tbTUS (tbTUS only), 2) real cTBS150 followed by sham tbTUS (cTBS only), 3) real cTBS150 followed by real tbTUS (metaplasticity), and 4) real tbTUS followed by real cTBS150 (depotentiation). We measured motor-evoked potential amplitude, short-interval intracortical inhibition, long-interval intracortical inhibition, intracortical facilitation, and short-interval intracortical facilitation before and up to 90 minutes after plasticity intervention.Plasticity effects lasted at least 60 minutes longer when tbTUS was primed with cTBS150 compared to tbTUS alone. Plasticity was abolished when cTBS150 was delivered after tbTUS. cTBS150 alone had no significant effect. No changes in M1 intracortical circuits were observed.Plasticity induction by tbTUS can be modified in manners consistent with homeostatic metaplasticity and depotentiation. This substantiates evidence that tbTUS induces LTP-like processes and suggest that metaplasticity can be harnessed in the therapeutic development of TUS.Significance statement Low intensity transcranial focused ultrasound stimulation (TUS) is a novel technique for non-invasive brain stimulation (NIBS). Compared to current forms of NIBS, TUS can target deep regions of the brain, such as the basal ganglia and thalamus, with high focality. This is promising for therapeutic development. Neuroplasticity refers to the strengthening or weakening of neural connections based on neural activity. Neural activity can also change the brain's capacity for future plasticity via the process of metaplasticity. This study was the first to characterize the effects of metaplasticity on TUS-induced neuroplasticity, demonstrating that metaplastic processes can enhance and abolish TUS effects. The findings increase understanding of the mechanisms of TUS-induced plasticity and inform future therapeutic development of TUS.

5.
Elife ; 122024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39190604

RESUMEN

Background: The dichotomy between the hypo- versus hyperkinetic nature of Parkinson's disease (PD) and dystonia, respectively, is thought to be reflected in the underlying basal ganglia pathophysiology. In this study, we investigated differences in globus pallidus internus (GPi) neuronal activity, and short- and long-term plasticity of direct pathway projections. Methods: Using microelectrode recording data collected from the GPi during deep brain stimulation surgery, we compared neuronal spiketrain features between people with PD and those with dystonia, as well as correlated neuronal features with respective clinical scores. Additionally, we characterized and compared readouts of short- and long-term synaptic plasticity using measures of inhibitory evoked field potentials. Results: GPi neurons were slower, bustier, and less regular in dystonia. In PD, symptom severity positively correlated with the power of low-beta frequency spiketrain oscillations. In dystonia, symptom severity negatively correlated with firing rate and positively correlated with neuronal variability and the power of theta frequency spiketrain oscillations. Dystonia was moreover associated with less long-term plasticity and slower synaptic depression. Conclusions: We substantiated claims of hyper- versus hypofunctional GPi output in PD versus dystonia, and provided cellular-level validation of the pathological nature of theta and low-beta oscillations in respective disorders. Such circuit changes may be underlain by disease-related differences in plasticity of striato-pallidal synapses. Funding: This project was made possible with the financial support of Health Canada through the Canada Brain Research Fund, an innovative partnership between the Government of Canada (through Health Canada) and Brain Canada, and of the Azrieli Foundation (LM), as well as a grant from the Banting Research Foundation in partnership with the Dystonia Medical Research Foundation (LM).


Asunto(s)
Ganglios Basales , Distonía , Globo Pálido , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/fisiopatología , Distonía/fisiopatología , Masculino , Persona de Mediana Edad , Femenino , Ganglios Basales/fisiopatología , Globo Pálido/fisiopatología , Anciano , Estimulación Encefálica Profunda , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Adulto
6.
Artículo en Inglés | MEDLINE | ID: mdl-39136363

RESUMEN

BACKGROUND: A randomized trial suggested that reducing left-sided subthalamic stimulation amplitude could improve axial dysfunction. OBJECTIVES: To explore open-label tolerability and associations between trial outcomes and asymmetry data. METHODS: We collected adverse events in trial participants treated with open-label lateralized settings for ≥3 months. We explored associations between trial outcomes, location of stimulation and motor asymmetry. RESULTS: 14/17 participants tolerated unilateral amplitude reduction (left-sided = 10, right-sided = 4). Two hundred eighty-four left-sided and 1113 right-sided stimulated voxels were associated with faster gait velocity, 81 left-sided and 22 right-sided stimulated voxels were associated with slower gait velocity. Amplitude reduction contralateral to shorter step length was associated with 2.4-point reduction in axial MDS-UPDRS. Reduction contralateral to longer step length was associated with 10-point increase in MDS-UPDRS. CONCLUSIONS: Left-sided amplitude reduction is potentially more tolerable than right-sided amplitude reduction. Right-sided more than left-sided stimulation could be associated with faster gait velocity. Shortened step length might reflect contralateral overstimulation.

7.
Mov Disord ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39120112

RESUMEN

BACKGROUND: There remains high variability in clinical outcomes when the same magnetic resonance image-guided focused ultrasound (MRgFUS) thalamotomy target is used for both essential tremor (ET) and tremor-dominant Parkinson's disease (TDPD). OBJECTIVE: Our goal is to refine the MRgFUS thalamotomy target for TDPD versus ET. METHODS: We retrospectively performed voxel-wise efficacy and structural connectivity mapping using 3-12-month post-procedure hand tremor scores for a multicenter cohort of 32 TDPD patients and a previously published cohort of 79 ET patients, and 24-hour T1-weighted post-MRgFUS brain images. We validated our findings using Unified Parkinson's Disease Rating Scale part III scores for an independent cohort of nine TDPD patients. RESULTS: The post-MRgFUS clinical improvements were 45.9% ± 35.9%, 55.5% ± 36%, and 46.1% ± 18.6% for ET, multicenter TDPD and validation TDPD cohorts, respectively. The TDPD and ET efficacy maps differed significantly (ppermute < 0.05), with peak TDPD improvement (87%) at x = -13.5; y = -15.0; z = 1.5, ~3.5 mm anterior and 3 mm dorsal to the ET target. Discriminative connectivity projections were to the motor and premotor regions in TDPD, and to the motor and somatosensory regions in ET. The disorder-specific voxel-wise efficacy map could be used to estimate outcome in TDPD patients with high accuracy (R = 0.8; R2 = 0.64; P < 0.0001). The model was validated using the independent cohort of nine TDPD patients (R = 0.73; R2 = 0.53; P = 0.025-voxel analysis). CONCLUSION: We demonstrated that the most effective MRgFUS thalamotomy target in TDPD is in the ventral intermediate nucleus/ventralis oralis posterior border region. This finding offers new insights into the thalamic regions instrumental in tremor control, with pivotal implications for improving treatment outcomes. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

8.
Brain Stimul ; 17(4): 890-895, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39084519

RESUMEN

Non-invasive ultrasound neuromodulation has experienced exponential growth in the neuroscientific literature, recently also including clinical studies and applications. However, clinical recommendations for the secure and effective application of ultrasound neuromodulation in pathological brains are currently lacking. Here, clinical experts with neuroscientific expertise in clinical brain stimulation and ultrasound neuromodulation present initial clinical recommendations for ultrasound neuromodulation with relevance for all ultrasound neuromodulation techniques. The recommendations start with methodological safety issues focusing on technical issues to avoid harm to the brain. This is followed by clinical safety issues focusing on important factors concerning pathological situations.


Asunto(s)
Terapia por Ultrasonido , Humanos , Terapia por Ultrasonido/métodos , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen
9.
Mov Disord ; 39(8): 1364-1374, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38787806

RESUMEN

BACKGROUND: Low-intensity transcranial ultrasound stimulation (TUS) is a noninvasive brain stimulation (NIBS) technique with high spatial specificity. Previous studies showed that TUS delivered in a theta burst pattern (tbTUS) increased motor cortex (MI) excitability up to 30 minutes due to long-term potentiation (LTP)-like plasticity. Studies using other forms of NIBS suggested that cortical plasticity may be impaired in patients with Parkinson's disease (PD). OBJECTIVE: The aim was to investigate the neurophysiological effects of tbTUS in PD patients off and on dopaminergic medications compared to healthy controls. METHODS: We studied 20 moderately affected PD patients in on and off dopaminergic medication states (7 with and 13 without dyskinesia) and 17 age-matched healthy controls in a case-controlled study. tbTUS was applied for 80 seconds to the MI. Motor-evoked potentials (MEP), short-interval intracortical inhibition (SICI), and short-interval intracortical facilitation (SICF) were recorded at baseline, and at 5 minutes (T5), T30, and T60 after tbTUS. Motor Unified Parkinson's Disease Rating Scale (mUPDRS) was measured at baseline and T60. RESULTS: tbTUS significantly increased MEP amplitude at T30 compared to baseline in controls and in PD patients on but not in PD patients off medications. SICI was reduced in PD off medications compared to controls. tbTUS did not change in SICI or SICF. The bradykinesia subscore of mUPDRS was reduced at T60 compared to baseline in PD on but not in the off medication state. The presence of dyskinesia did not affect tbTUS-induced plasticity. CONCLUSIONS: tbTUS-induced LTP plasticity is impaired in PD patients off medications and is restored by dopaminergic medications. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Potenciales Evocados Motores , Corteza Motora , Plasticidad Neuronal , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/terapia , Masculino , Femenino , Persona de Mediana Edad , Anciano , Potenciales Evocados Motores/fisiología , Potenciales Evocados Motores/efectos de los fármacos , Corteza Motora/fisiopatología , Plasticidad Neuronal/fisiología , Plasticidad Neuronal/efectos de los fármacos , Estudios de Casos y Controles , Estimulación Magnética Transcraneal/métodos , Ritmo Teta/fisiología
10.
Brain ; 147(9): 3083-3098, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-38808482

RESUMEN

Comprehensive understanding of the neural circuits involving the ventral tegmental area is essential for elucidating the anatomofunctional mechanisms governing human behaviour, in addition to the therapeutic and adverse effects of deep brain stimulation for neuropsychiatric diseases. Although the ventral tegmental area has been targeted successfully with deep brain stimulation for different neuropsychiatric diseases, the axonal connectivity of the region is not fully understood. Here, using fibre microdissections in human cadaveric hemispheres, population-based high-definition fibre tractography and previously reported deep brain stimulation hotspots, we find that the ventral tegmental area participates in an intricate network involving the serotonergic pontine nuclei, basal ganglia, limbic system, basal forebrain and prefrontal cortex, which is implicated in the treatment of obsessive-compulsive disorder, major depressive disorder, Alzheimer's disease, cluster headaches and aggressive behaviours.


Asunto(s)
Estimulación Encefálica Profunda , Mesencéfalo , Vías Nerviosas , Área Tegmental Ventral , Humanos , Estimulación Encefálica Profunda/métodos , Vías Nerviosas/fisiología , Mesencéfalo/fisiología , Área Tegmental Ventral/fisiología , Área Tegmental Ventral/diagnóstico por imagen , Masculino , Red Nerviosa/fisiología , Red Nerviosa/diagnóstico por imagen , Imagen de Difusión Tensora , Corteza Prefrontal/fisiología , Femenino , Ganglios Basales/fisiología
11.
Expert Rev Neurother ; 24(6): 597-605, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38713485

RESUMEN

INTRODUCTION: Essential tremor (ET) is the most frequent movement disorder, affecting up to 5% of adults > 65 years old. In 30-50% of cases, optimal medical management provides insufficient tremor relief and surgical options are considered. Thalamotomy is a time-honored intervention, which can be performed using radiofrequency (RF), stereotactic radiosurgery (SRS), or magnetic resonance-guided focused ultrasounds (MRgFUS). While the latter has received considerable attention in the last decade, SRS has consistently been demonstrated as an effective and well-tolerated option. AREAS COVERED: This review discusses the evidence on SRS thalamotomy for ET. Modern workflows and emerging techniques are detailed. Current outcomes are analyzed, with a specific focus on tremor reduction, complications and radiological evolution of the lesions. Challenges for the field are highlighted. EXPERT OPINION: SRS thalamotomy improves tremor in > 80% patients. The efficacy appears comparable to other modalities, including DBS, RF and MRgFUS. Side effects result mostly from idiosyncratic hyper-responses to radiation, which occur in up to 10% of treatments, are usually self-resolving, and are symptomatic in < 4% of patients. Future research should focus on accumulating more data on bilateral treatments, collecting long-term outcomes, refining targeting, and improving lesion consistency.


Asunto(s)
Temblor Esencial , Radiocirugia , Tálamo , Temblor Esencial/cirugía , Temblor Esencial/terapia , Humanos , Radiocirugia/métodos , Radiocirugia/tendencias , Tálamo/cirugía
12.
Nat Commun ; 15(1): 3130, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605039

RESUMEN

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) produces an electrophysiological signature called evoked resonant neural activity (ERNA); a high-frequency oscillation that has been linked to treatment efficacy. However, the single-neuron and synaptic bases of ERNA are unsubstantiated. This study proposes that ERNA is a subcortical neuronal circuit signature of DBS-mediated engagement of the basal ganglia indirect pathway network. In people with Parkinson's disease, we: (i) showed that each peak of the ERNA waveform is associated with temporally-locked neuronal inhibition in the STN; (ii) characterized the temporal dynamics of ERNA; (iii) identified a putative mesocircuit architecture, embedded with empirically-derived synaptic dynamics, that is necessary for the emergence of ERNA in silico; (iv) localized ERNA to the dorsal STN in electrophysiological and normative anatomical space; (v) used patient-wise hotspot locations to assess spatial relevance of ERNA with respect to DBS outcome; and (vi) characterized the local fiber activation profile associated with the derived group-level ERNA hotspot.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Humanos , Enfermedad de Parkinson/terapia , Estimulación Encefálica Profunda/métodos , Núcleo Subtalámico/fisiología , Ganglios Basales/fisiología , Neuronas/fisiología
13.
Expert Rev Med Devices ; 21(4): 285-292, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38573133

RESUMEN

INTRODUCTION: Alzheimer's disease (AD) requires novel therapeutic approaches due to limited efficacy of current treatments. AREAS COVERED: This article explores AD as a manifestation of neurocircuit dysfunction and evaluates deep brain stimulation (DBS) as a potential intervention. Focusing on fornix-targeted stimulation (DBS-f), the article summarizes safety, feasibility, and outcomes observed in phase 1/2 trials, highlighting findings such as cognitive improvement, increased metabolism, and hippocampal growth. Topics for further study include optimization of electrode placement, and the role of stimulation-induced autobiographical-recall. Nucleus basalis of Meynert (DBS-NBM) DBS is also discussed and compared with DBS-f. Challenges with both DBS-f and DBS-NBM are identified, emphasizing the need for further research on optimal stimulation parameters. The article also reviews alternative DBS targets, including medial temporal lobe structures and the ventral capsule/ventral striatum. EXPERT OPINION: Looking ahead, a phase-3 DBS-f trial, and the prospect of closed-loop stimulation using EEG-derived biomarkers or hippocampal theta activity are highlighted. Recent FDA-approved therapies and other neuromodulation techniques like temporal interference and low-intensity ultrasound are considered. The article concludes by underscoring the importance of imaging-based diagnosis and staging to allow for circuit-targeted therapies, given the heterogeneity of AD and varied stages of neurocircuit dysfunction.

14.
Neurobiol Dis ; 195: 106490, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561111

RESUMEN

The auditory oddball is a mainstay in research on attention, novelty, and sensory prediction. How this task engages subcortical structures like the subthalamic nucleus and substantia nigra pars reticulata is unclear. We administered an auditory OB task while recording single unit activity (35 units) and local field potentials (57 recordings) from the subthalamic nucleus and substantia nigra pars reticulata of 30 patients with Parkinson's disease undergoing deep brain stimulation surgery. We found tone modulated and oddball modulated units in both regions. Population activity differentiated oddball from standard trials from 200 ms to 1000 ms after the tone in both regions. In the substantia nigra, beta band activity in the local field potential was decreased following oddball tones. The oddball related activity we observe may underlie attention, sensory prediction, or surprise-induced motor suppression.


Asunto(s)
Estimulación Acústica , Estimulación Encefálica Profunda , Enfermedad de Parkinson , Porción Reticular de la Sustancia Negra , Núcleo Subtalámico , Humanos , Núcleo Subtalámico/fisiología , Masculino , Persona de Mediana Edad , Femenino , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/terapia , Anciano , Porción Reticular de la Sustancia Negra/fisiología , Estimulación Encefálica Profunda/métodos , Estimulación Acústica/métodos , Percepción Auditiva/fisiología , Potenciales Evocados Auditivos/fisiología , Sustancia Negra/fisiología , Adulto
15.
Sci Data ; 11(1): 353, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589407

RESUMEN

Diffusion-weighted MRI (dMRI) is a widely used neuroimaging modality that permits the in vivo exploration of white matter connections in the human brain. Normative structural connectomics - the application of large-scale, group-derived dMRI datasets to out-of-sample cohorts - have increasingly been leveraged to study the network correlates of focal brain interventions, insults, and other regions-of-interest (ROIs). Here, we provide a normative, whole-brain connectome in MNI space that enables researchers to interrogate fiber streamlines that are likely perturbed by given ROIs, even in the absence of subject-specific dMRI data. Assembled from multi-shell dMRI data of 985 healthy Human Connectome Project subjects using generalized Q-sampling imaging and multispectral normalization techniques, this connectome comprises ~12 million unique streamlines, the largest to date. It has already been utilized in at least 18 peer-reviewed publications, most frequently in the context of neuromodulatory interventions like deep brain stimulation and focused ultrasound. Now publicly available, this connectome will constitute a useful tool for understanding the wider impact of focal brain perturbations on white matter architecture going forward.


Asunto(s)
Conectoma , Sustancia Blanca , Humanos , Encéfalo/diagnóstico por imagen , Conectoma/métodos , Imagen de Difusión por Resonancia Magnética/métodos , Neuroimagen , Sustancia Blanca/diagnóstico por imagen
16.
J Neurosurg ; 141(2): 381-393, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38518284

RESUMEN

OBJECTIVE: Deep brain stimulation (DBS) is an effective treatment for medically refractory movement disorders and other neurological conditions. To comprehensively characterize the prevalence, locations, timing of detection, clinical effects, and risk factors of DBS-related intracranial hemorrhage (ICH), the authors performed a systematic review of the published literature. METHODS: PubMed, EMBASE, and Web of Science were searched using 2 concepts: cerebral hemorrhage and brain stimulation, with filters for English, human studies, and publication dates 1980-2023. The inclusion criteria were the use of DBS intervention for any human neurological condition, with documentation of hemorrhagic complications by location and clinical effect. Studies with non-DBS interventions, no documentation of hemorrhage outcome, patient cohorts of ≤ 10, and pediatric patients were excluded. The risk of bias was assessed using Centre for Evidence-Based Medicine Levels of Evidence. The authors performed proportional meta-analysis for ICH prevalence. RESULTS: A total of 63 studies, with 13,056 patients, met the inclusion criteria. The prevalence of ICH was 2.9% (fixed-effects model, 95% CI 2.62%-3.2%) per patient and 1.6% (random-effects model, 95% CI 1.34%-1.87%) per DBS lead, with 49.6% being symptomatic. The ICH rates did not change with time. ICH most commonly occurred around the DBS lead, with 16% at the entry point, 31% along the track, and 7% at the target. Microelectrode recording (MER) during DBS was associated with increased ICH rate compared to DBS without MER (3.5 ± 2.2 vs 2.1 ± 1.4; p[T ≤ t] 1-tail = 0.038). Other reported ICH risk factors include intraoperative systolic blood pressure > 140 mm Hg, sulcal DBS trajectories, and multiple microelectrode insertions. Sixty percent of ICH was detected at 24 hours postoperatively and 27% intraoperatively. The all-cause mortality rate of DBS was 0.4%, with ICH accounting for 22% of deaths. Single-surgeon DBS experience showed a weak inverse correlation (r = -0.27, p = 0.2189) between the rate of ICH per lead and the number of leads implanted per year. CONCLUSIONS: This study provides level III evidence that MER during DBS is a risk factor for ICH. Other risk factors include intraoperative systolic blood pressure > 140 mm Hg, sulcal trajectories, and multiple microelectrode insertions. Avoidance of these risk factors may decrease the rate of ICH.


Asunto(s)
Estimulación Encefálica Profunda , Hemorragias Intracraneales , Estimulación Encefálica Profunda/efectos adversos , Humanos , Hemorragias Intracraneales/epidemiología , Hemorragias Intracraneales/etiología , Factores de Riesgo , Prevalencia
18.
Brain Stimul ; 17(2): 166-175, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38342364

RESUMEN

BACKGROUND: Deep brain stimulation (DBS) has been widely used to manage debilitating neurological symptoms in movement disorders such as Parkinson's disease (PD). Despite its well-established symptomatic benefits, our understanding of the mechanisms underlying DBS and its possible effect on the accumulation of pathological proteins in neurodegeneration remains limited. Accumulation and oligomerization of the protein alpha-synuclein (α-Syn) are implicated in the loss of dopaminergic neurons in the substantia nigra in PD, making α-Syn a potential therapeutic target for disease modification. OBJECTIVE: We examined the effects of high frequency electrical stimulation on α-Syn levels and oligomerization in cell and rodent models. METHODS: High frequency stimulation, mimicking DBS parameters used for PD, was combined with viral-mediated overexpression of α-Syn in cultured rat primary cortical neurons or in substantia nigra of rats. Bimolecular protein complementation with split fluorescent protein reporters was used to detect and quantify α-Syn oligomers. RESULTS: High frequency electrical stimulation reduced the expression of PD-associated mutant α-Syn and mitigated α-Syn oligomerization in cultured neurons. Furthermore, DBS in the substantia nigra, but not the subthalamic nucleus, decreased overall levels of α-Syn, including oligomer levels, in the substantia nigra. CONCLUSIONS: Taken together, our results demonstrate that direct high frequency stimulation can reduce accumulation and pathological forms of α-Syn in cultured neurons in vitro and in substantia nigra in vivo. Thus, DBS therapy could have a role beyond symptomatic treatment, with potential disease-modifying properties that can be exploited to target pathological proteins in neurodegenerative diseases.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , alfa-Sinucleína , Animales , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Estimulación Encefálica Profunda/métodos , Ratas , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/metabolismo , Ratas Sprague-Dawley , Modelos Animales de Enfermedad , Sustancia Negra/metabolismo , Células Cultivadas , Masculino , Neuronas/metabolismo , Neuronas/fisiología , Estimulación Eléctrica/métodos
19.
Biochem Biophys Rep ; 37: 101635, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38298208

RESUMEN

Osteoarthritis causes progressive joint deterioration, severe morbidity, and reduced mobility in both humans and horses. Currently, osteoarthritis is diagnosed at late stages through clinical examination and radiographic imaging, hence it is challenging to address and provide timely therapeutic interventions to slow disease progression or ameliorate symptoms. Extracellular vesicles are cell-derived vesicles that play a key role in cell-to-cell communication and are potential sources for specific composite biomarker panel discovery. We here used a multi-omics strategy combining proteomics and phospholipidomics in an integral approach to identify composite biomarkers associated to purified extracellular vesicles from synovial fluid of healthy, mildly and severely osteoarthritic equine joints. Although the number of extracellular vesicles was unaffected by osteoarthritis, proteome profiling of extracellular vesicles by mass spectrometry identified 40 differentially expressed proteins (non-adjusted p < 0.05) in osteoarthritic joints associated with 7 significant canonical pathways in osteoarthritis. Moreover, pathway analysis unveiled changes in disease and molecular functions during osteoarthritis development. Phospholipidome profiling by mass spectrometry showed a relative increase in sphingomyelin and a decrease in phosphatidylcholine, phosphatidylinositol, and phosphatidylserine in extracellular vesicles derived from osteoarthritic joints compared to healthy joints. Unsupervised data integration revealed positive correlations between the proteome and the phospholipidome. Comprehensive analysis showed that some phospholipids and their related proteins increased as the severity of osteoarthritis progressed, while others decreased or remained stable. Altogether our data show interrelationships between synovial fluid extracellular vesicle-associated phospholipids and proteins responding to osteoarthritis pathology and which could be explored as potential composite diagnostic biomarkers of disease.

20.
Neurotherapeutics ; 21(3): e00330, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38340524

RESUMEN

Over the past 30 years, the field of neuromodulation has witnessed remarkable advancements. These developments encompass a spectrum of techniques, both non-invasive and invasive, that possess the ability to both probe and influence the central nervous system. In many cases neuromodulation therapies have been adopted into standard care treatments. Transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), and transcranial ultrasound stimulation (TUS) are the most common non-invasive methods in use today. Deep brain stimulation (DBS), spinal cord stimulation (SCS), and vagus nerve stimulation (VNS), are leading surgical methods for neuromodulation. Ongoing active clinical trials using are uncovering novel applications and paradigms for these interventions.


Asunto(s)
Estimulación Encefálica Profunda , Estimulación Transcraneal de Corriente Directa , Estimulación Magnética Transcraneal , Humanos , Estimulación Encefálica Profunda/métodos , Estimulación Magnética Transcraneal/métodos , Estimulación Transcraneal de Corriente Directa/métodos , Estimulación de la Médula Espinal/métodos , Estimulación del Nervio Vago/métodos , Estimulación del Nervio Vago/tendencias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA