Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 288(49): 35180-91, 2013 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-24097990

RESUMEN

Myelin transcription factor 1 (MyT1/NZF2), a member of the neural zinc-finger (NZF) protein family, is a transcription factor that plays a central role in the developing central nervous system. It has also recently been shown that, in combination with two other transcription factors, the highly similar paralog MyT1L is able to direct the differentiation of murine and human stem cells into functional neurons. MyT1 contains seven zinc fingers (ZFs) that are highly conserved throughout the protein and throughout the NZF family. We recently presented a model for the interaction of the fifth ZF of MyT1 with a DNA sequence derived from the promoter of the retinoic acid receptor (RARE) gene. Here, we have used NMR spectroscopy, in combination with surface plasmon resonance and data-driven molecular docking, to delineate the mechanism of DNA binding for double ZF polypeptides derived from MyT1. Our data indicate that a two-ZF unit interacts with the major groove of the entire RARE motif and that both fingers bind in an identical manner and with overall two-fold rotational symmetry, consistent with the palindromic nature of the target DNA. Several key residues located in one of the irregular loops of the ZFs are utilized to achieve specific binding. Analysis of the human and mouse genomes based on our structural data reveals three putative MyT1 target genes involved in neuronal development.


Asunto(s)
Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Sitios de Unión/genética , ADN/genética , Proteínas de Unión al ADN/genética , Humanos , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Neurogénesis , Neuronas/citología , Neuronas/metabolismo , Resonancia Magnética Nuclear Biomolecular , Regiones Promotoras Genéticas , Unión Proteica , Conformación Proteica , Receptores de Ácido Retinoico/genética , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico , Resonancia por Plasmón de Superficie , Factores de Transcripción/genética , Dedos de Zinc
2.
J Biol Chem ; 288(27): 19986-20001, 2013 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-23696640

RESUMEN

α-Hemoglobin (αHb)-stabilizing protein (AHSP) is a molecular chaperone that assists hemoglobin assembly. AHSP induces changes in αHb heme coordination, but how these changes are facilitated by interactions at the αHb·AHSP interface is not well understood. To address this question we have used NMR, x-ray absorption spectroscopy, and ligand binding measurements to probe αHb conformational changes induced by AHSP binding. NMR chemical shift analyses of free CO-αHb and CO-αHb·AHSP indicated that the seven helical elements of the native αHb structure are retained and that the heme Fe(II) remains coordinated to the proximal His-87 side chain. However, chemical shift differences revealed alterations of the F, G, and H helices and the heme pocket of CO-αHb bound to AHSP. Comparisons of iron-ligand geometry using extended x-ray absorption fine structure spectroscopy showed that AHSP binding induces a small 0.03 Å lengthening of the Fe-O2 bond, explaining previous reports that AHSP decreases αHb O2 affinity roughly 4-fold and promotes autooxidation due primarily to a 3-4-fold increase in the rate of O2 dissociation. Pro-30 mutations diminished NMR chemical shift changes in the proximal heme pocket, restored normal O2 dissociation rate and equilibrium constants, and reduced O2-αHb autooxidation rates. Thus, the contacts mediated by Pro-30 in wild-type AHSP promote αHb autooxidation by introducing strain into the proximal heme pocket. As a chaperone, AHSP facilitates rapid assembly of αHb into Hb when ßHb is abundant but diverts αHb to a redox resistant holding state when ßHb is limiting.


Asunto(s)
Proteínas Sanguíneas/química , Hemoglobina A/química , Hierro/química , Chaperonas Moleculares/química , Oxígeno/química , Oxihemoglobinas/química , Sitios de Unión , Proteínas Sanguíneas/metabolismo , Hemoglobina A/metabolismo , Humanos , Hierro/metabolismo , Chaperonas Moleculares/metabolismo , Resonancia Magnética Nuclear Biomolecular , Oxidación-Reducción , Oxígeno/metabolismo , Oxihemoglobinas/metabolismo , Estructura Secundaria de Proteína
3.
J Biol Chem ; 284(9): 5827-35, 2009 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-19095651

RESUMEN

MED-1 is a member of a group of divergent GATA-type zinc finger proteins recently identified in several species of Caenorhabditis. The med genes are transcriptional regulators that are involved in the specification of the mesoderm and endoderm precursor cells in nematodes. Unlike other GATA-type zinc fingers that recognize the consensus sequence (A/C/T)GATA(A/G), the MED-1 zinc finger (MED1zf) binds the larger and atypical site GTATACT(T/C)(3). We have examined the basis for this unusual DNA specificity using a range of biochemical and biophysical approaches. Most strikingly, we show that although the core of the MED1zf structure is similar to that of GATA-1, the basic tail C-terminal to the zinc finger unexpectedly adopts an alpha-helical structure upon binding DNA. This additional helix appears to contact the major groove of the DNA, making contacts that explain the extended DNA consensus sequence observed for MED1zf. Our data expand the versatility of DNA recognition by GATA-type zinc fingers and perhaps shed new light on the DNA-binding properties of mammalian GATA factors.


Asunto(s)
Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , ADN/metabolismo , Factores de Transcripción GATA/química , Factores de Transcripción GATA/metabolismo , Factor de Transcripción GATA1/metabolismo , Secuencia de Aminoácidos , Animales , Calorimetría , ADN/química , Cartilla de ADN/química , Ensayo de Cambio de Movilidad Electroforética , Factor de Transcripción GATA1/química , Factor de Transcripción GATA1/genética , Espectroscopía de Resonancia Magnética , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Homología de Secuencia de Aminoácido , Resonancia por Plasmón de Superficie , Dedos de Zinc
4.
J Biol Chem ; 283(8): 5158-67, 2008 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-18073212

RESUMEN

Zinc binding domains, or zinc fingers (ZnFs), form one of the most numerous and most diverse superclasses of protein structural motifs in eukaryotes. Although our understanding of the functions of several classes of these domains is relatively well developed, we know much less about the molecular mechanisms of action of many others. Myelin transcription factor 1 (MyT1) type ZnFs are found in organisms as diverse as nematodes and mammals and are found in a range of sequence contexts. MyT1, one of the early transcription factors expressed in the developing central nervous system, contains seven MyT1 ZnFs that are very highly conserved both within the protein and between species. We have used a range of biophysical techniques, including NMR spectroscopy and data-driven macromolecular docking, to investigate the structural basis for the interaction between MyT1 ZnFs and DNA. Our data indicate that MyT1 ZnFs recognize the major groove of DNA in a way that appears to differ from other known zinc binding domains.


Asunto(s)
Proteínas de Unión al ADN/química , ADN/química , Modelos Moleculares , Factores de Transcripción/química , Dedos de Zinc/fisiología , Animales , Sistema Nervioso Central/embriología , ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Ratones , Nematodos/embriología , Resonancia Magnética Nuclear Biomolecular , Unión Proteica/fisiología , Relación Estructura-Actividad , Factores de Transcripción/metabolismo
5.
J Mol Biol ; 375(1): 1-11, 2008 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-18005989

RESUMEN

The C-terminal binding proteins (CtBPs) play roles in diverse cellular processes including transcriptional regulation, Golgi membrane fission, and synaptic ribbon formation. In the context of transcriptional regulation, they function as corepressors, interacting with promoter-bound transcription factors and recruiting a large protein complex that contains chromatin-modifying enzymes. We recently described the structure of a Thanatos-associated protein (THAP) domain that is found in a new member of the CtBP family, the Caenorhabditis elegans CTBP-1 protein. We have identified additional THAP domain-containing CtBPs in the nematode, echinoderm, and cephalochordate lineages. The distribution of these lineages within the animal kingdom suggests that the ancestral form of the animal CtBPs may have contained a THAP domain that was subsequently lost in the vertebrate and arthropod lineages. We also provide functional data indicating that CTBP-1 represses gene expression and homodimerizes and interacts with PXDLS-containing partner proteins, three key features of the previously characterized animal CtBPs. CTBP-1 is therefore the founding member of a new subgroup within the CtBP corepressor family, the THAP domain-containing CtBPs.


Asunto(s)
Proteínas de Caenorhabditis elegans/química , Caenorhabditis elegans/química , Proteínas Represoras/química , Oxidorreductasas de Alcohol/química , Oxidorreductasas de Alcohol/genética , Empalme Alternativo , Animales , Proteínas de Caenorhabditis elegans/genética , ADN de Helmintos/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Dimerización , Genes de Helminto , Modelos Genéticos , Mutación , Filogenia , Unión Proteica , Estructura Terciaria de Proteína , Análisis de Secuencia de ADN
7.
Biochemistry ; 45(35): 10584-90, 2006 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-16939210

RESUMEN

Homeodomain-only protein (HOP) is an 8-kDa transcriptional corepressor that is essential for the normal development of the mammalian heart. Previous studies have shown that HOP, which consists entirely of a putative homeodomain, acts downstream of Nkx2.5 and associates with the serum response factor (SRF), repressing transcription from SRF-responsive genes. HOP is also able to recruit histone deacetylase (HDAC) activity, consistent with its ability to repress transcription. Unlike other classic homeodomain proteins, HOP does not appear to interact with DNA, although it has been unclear if this is because of an overall divergent structure or because of specific amino acid differences between HOP and other homeodomains. To work toward an understanding of HOP function, we have determined the 3D structure of full-length HOP and used a range of biochemical assays to define the parts of the protein that are functionally important for its repression activity. We show that HOP forms a classical homeodomain fold but that it cannot recognize double stranded DNA, a result that emphasizes the importance of caution in predicting protein function from sequence homology alone. We also demonstrate that two distinct regions on the surface of HOP are required for its ability to repress an SRF-driven reporter gene, and it is likely that these motifs direct interactions between HOP and partner proteins such as SRF- and HDAC-containing complexes. Our results demonstrate that the homeodomain fold has been co-opted during evolution for functions other than sequence-specific DNA binding and suggest that HOP functions as an adaptor protein to mediate transcriptional repression.


Asunto(s)
Regulación de la Expresión Génica , Genes Reguladores , Proteínas de Homeodominio/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Células COS , Chlorocebus aethiops , Secuencia Conservada , Proteínas de Homeodominio/genética , Datos de Secuencia Molecular , Mutación , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Factor de Respuesta Sérica/genética , Soluciones/química , Relación Estructura-Actividad , Transcripción Genética , Transfección
8.
Int J Biochem Cell Biol ; 38(1): 6-11, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16095949

RESUMEN

GATA-1, the founding member of the GATA transcription factor family, is essential for cell maturation and differentiation within the erythroid and megakaryocytic lineages. GATA-1 regulates the expression of many genes within these lineages and its functionality depends upon its ability to bind both DNA and protein partners. Disruption of either of these functions causes severe hematopoietic dysfunction and results in blood disorders, such as thrombocytopenia and anemia. Within this review, we will focus on the structural aspects of GATA-1 with regard to interactions with its many partners and the identification of several mutations that disrupt these interactions.


Asunto(s)
Diferenciación Celular/fisiología , Movimiento Celular/fisiología , Eritropoyesis/fisiología , Factor de Transcripción GATA1/metabolismo , Trombopoyesis/fisiología , Anemia/genética , Anemia/metabolismo , Animales , Factor de Transcripción GATA1/química , Factor de Transcripción GATA1/genética , Humanos , Estructura Terciaria de Proteína , Relación Estructura-Actividad , Trombocitopenia/genética , Trombocitopenia/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA