Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
F1000Res ; 7: 596, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30345019

RESUMEN

Background: Ambient particulate matter (PM) smaller than 2.5 µm in diameter (PM 2.5) undergoes diurnal changes in chemical composition due to photochemical oxidation. In this study we examine the relationships between oxidative activity and inflammatory responses associated with these diurnal chemical changes. Because secondary PM contains a higher fraction of oxidized PM species, we hypothesized that PM 2.5 collected during afternoon hours would induce a greater inflammatory response than primary, morning PM 2.5. Methods: Time-integrated aqueous slurry samples of ambient PM 2.5 were collected using a direct aerosol-into-liquid collection system during defined morning and afternoon time periods. PM 2.5 samples were collected for 5 weeks in the late summer (August-September) of 2016 at a central Los Angeles site. Morning samples, largely consisting of fresh primary traffic emissions (primary PM), were collected from 6-9am (am-PM 2.5), and afternoon samples were collected from 12-4pm (pm-PM 2.5), when PM composition is dominated by products of photochemical oxidation (secondary PM). The two diurnally phased PM 2.5 slurries (am- and pm-PM 2.5) were characterized for chemical composition and BV-2 microglia were assayed in vitro for oxidative and inflammatory gene responses. Results: Contrary to expectations, the am-PM 2.5 slurry had more proinflammatory activity than the pm-PM 2.5 slurry as revealed by nitric oxide (NO) induction, as well as the upregulation of proinflammatory cytokines IL-1ß, IL-6, and CCL2 (MCP-1), as assessed by messenger RNA production. Conclusions: The diurnal differences observed in this study may be in part attributed to the greater content of transition metals and water-insoluble organic carbon (WIOC) of am-PM 2.5 (primary PM) vs. pm-PM 2.5 (secondary PM), as these two classes of compounds can increase PM 2.5 toxicity.


Asunto(s)
Inflamación/inducido químicamente , Material Particulado/toxicidad , Animales , Línea Celular , Citocinas/metabolismo , Inflamación/metabolismo , Los Angeles , Ratones , Óxido Nítrico/metabolismo , Estrés Oxidativo , Material Particulado/química , Factores de Tiempo
2.
Atmos Environ (1994) ; 188: 34-42, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30061791

RESUMEN

In this study, we examine the oxidative potential of airborne particulate matter (PM) in Beirut, Lebanon, as influenced by dust events originating in the Sahara and Arabian deserts. Segregated fine (< 2.5 µm) and coarse (2.5-10 µm) PM samples collected during dust events, as well as during non-dust periods, were analyzed for chemical composition, and the in vitro alveolar macrophage (AM) assay was utilized to determine the oxidative potential of both types of samples. We performed Spearman rank-order correlation analysis between individual chemical components and the oxidative potential of PM to examine the impact of the changes in PM chemical composition due to the occurrence of dust events on overall PM oxidative potential. Our findings revealed that the oxidative potential of Beirut's urban PM during non-dust periods was much higher than during dust episodes for fine PM. Our findings also indicated that tracers of tailpipe emissions (i.e., elemental (EC) and organic carbon (OC)), non-tailpipe emissions (i.e., heavy metals including Cu, Zn, As, Cd, and Pb), and secondary organic aerosols (SOA) (i.e., water-soluble organic carbon, WSOC) were significantly associated with the oxidative potential of PM during dust days and non-dust periods. However, the contribution of desert dust aerosols to Beirut's indigenous PM composition did not exacerbate its oxidative potential, as indicated by the negative correlations between the oxidative potential of PM and the concentrations of crustal elements that were enriched during the dust days. This suggests that aerosols generated during Saharan and Arabian dust events pose no additional health risk to the population due to PM-triggered reactive oxygen species formation. These results significantly contribute to our understanding of the effects of desert dust aerosols on the composition and oxidative potential of PM in several countries throughout the entire Middle East region that are impacted by dust events in the Sahara and Arabian deserts.

3.
F1000Res ; 7: 1031, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30828421

RESUMEN

Background: Primary (POA) and secondary (SOA) organic aerosols, deriving from both anthropogenic and biogenic sources, represent a major fraction of ambient particulate matter (PM) and play an important role in the etiology of respiratory and cardiovascular diseases, largely through systemic inflammation and cellular oxidative stress. The relative contributions of these species to the inhalation burden, however, are rather poorly characterized. In this study, we measured the in vitro oxidative stress response of alveolar macrophages exposed to primary and secondary PM derived from both anthropogenic and biogenic sources. Methods: POA and SOA were generated within an oxidation flow reactor (OFR) fed by pure, aerosolized α-pinene or gasoline engine exhaust, as representative emissions of biogenic and anthropogenic sources, respectively. The OFR utilized an ultraviolet (UV) lamp to achieve an equivalent atmospheric aging process of several days. Results: Anthropogenic SOA produced the greatest oxidative response (1900 ± 255 µg-Zymosan/mg-PM), followed by biogenic (α-pinene) SOA (1321 ± 542 µg-Zymosan/mg-PM), while anthropogenic POA produced the smallest response (51.4 ± 64.3 µg-Zymosan/mg-PM). Conclusions: These findings emphasize the importance of monitoring and controlling anthropogenic emissions in the urban atmosphere, while also taking into consideration spatial and seasonal differences in SOA composition. Local concentrations of biogenic and anthropogenic species contributing to the oxidative potential of ambient PM may vary widely, depending on the given region and time of year, due to factors such as surrounding vegetation, proximity to urban areas, and hours of daylight.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Macrófagos Alveolares/metabolismo , Monoterpenos/toxicidad , Estrés Oxidativo/efectos de los fármacos , Material Particulado/toxicidad , Emisiones de Vehículos , Aerosoles , Animales , Monoterpenos Bicíclicos , Línea Celular , Macrófagos Alveolares/patología , Ratones , Oxidación-Reducción/efectos de los fármacos
4.
Sci Total Environ ; 610-611: 1336-1346, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-28873663

RESUMEN

To investigate the relative impacts of emissions from Los Angeles International Airport (LAX), as well as the impacts of traffic emissions from freeways, on the oxidative potential of particulate matter (PM), PM0.25 were collected at two urban background locations in Los Angeles. Redox activity of the PM samples was measured by means of an in vitro alveolar macrophage assay that quantifies the formation of reactive oxygen species (ROS) in cells, and detailed chemical analyses were performed to determine the speciated chemical composition of collected PM. A molecular marker-based chemical mass balance (MM-CMB) model was applied to estimate the relative contributions from the following primary sources to the organic carbon (OC) component of PM: mobile sources (combined gasoline and diesel vehicles), wood smoke, vegetative detritus, road dust and ship emissions. A source profile of aircraft emissions was not included in the model; however its contribution was estimated from un-apportioned primary OC in the MM-CMB model ("other OC") after accounting for the contribution of secondary organic carbon (SOC) to OC. The contribution of mobile sources to OC was 82% and 28% at the central Los Angeles site (freeway emissions) and the LAX site, respectively. The estimated contribution of aircraft emissions to PM0.25 OC was 36% at the LAX site. ROS activity levels showed little spatial variability, with no statistically significant difference between the averages observed at LAX (24.75±4.01µgZymosan/m3) and central Los Angeles (27.77±2 0.32µgZymosan/m3), suggesting similar levels of inhalation exposure to redox active species of PM0.25. A multiple linear regression analysis indicated that the variability in ROS activity is best explained by the chemical markers of major identified sources: EC emitted by traffic, and sulfur, considered in our study as a potential tracer of aircraft emissions, with statistically significantly higher concentrations of sulfur at the LAX site (p<0.001).

5.
Brain Res Cogn Brain Res ; 19(3): 275-88, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15062865

RESUMEN

To address the impact of differences in language lateralization on joke comprehension, event-related brain potentials (ERPs) were recorded as 16 left- and 16 right-handed adults read one-line jokes and non-funny control stimuli ("A replacement player hit a home run with my girl/ball,"). In right-handers, jokes elicited a late positivity 500-900 ms post-stimulus onset that was largest over right hemisphere (RH) centro-parietal electrode sites, and a slow sustained negativity over anterior left lateral sites. In left-handers, jokes elicited a late positivity 500-900 ms post-onset that was larger and more broadly distributed than in the right-handers' ERPs. In right-handed women, the late positivity was larger over RH electrode sites. In left-handed women, the late positivity was bilaterally symmetric. The highly asymmetric slow sustained negativity over left anterior electrode sites was absent from left-handers' ERPs to jokes. Differences may reflect more efficient inter-hemispheric communication in the left-handers, as they are reputed to have relatively larger corpus callosal areas than right-handers. Results support the portrait of more bilateral language representation among left-handers, and suggest language lateralization affects high-level language comprehension tasks such as joke comprehension.


Asunto(s)
Comprensión/fisiología , Potenciales Evocados/fisiología , Lateralidad Funcional/fisiología , Ingenio y Humor como Asunto , Adolescente , Adulto , Femenino , Humanos , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA