Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39229193

RESUMEN

Gene loss is expected in microbial communities when the benefit of obtaining a biosynthetic precursor from a neighbor via cross-feeding outweighs the cost of retaining a biosynthetic gene. However, gene cost primarily comes from expression, and many biosynthetic genes are only expressed when needed. Thus, one can conversely expect cross-feeding to repress biosynthetic gene expression and promote gene retention by lowering gene cost. Here we examined long-term bacterial cocultures pairing Escherichia coli and Rhodopseudomonas palustris for evidence of gene loss or retention in response to cross-feeding of non-essential adenine. Although R. palustris continued to externalize adenine in long-term cultures, E. coli did not accumulate mutations in purine synthesis genes, even after 700 generations. E. coli purine synthesis gene expression was low in coculture, suggesting that gene repression removed selective pressure for gene loss. In support of this explanation, R. palustris also had low transcript levels for iron-scavenging siderophore genes in coculture, likely because E. coli facilitated iron acquisition by R. palustris. R. palustris siderophore gene mutations were correspondingly rare in long-term cocultures but were prevalent in monocultures where transcript levels were high. Our data suggests that cross-feeding does not always drive gene loss, but can instead promote gene retention by repressing costly expression.

2.
Appl Environ Microbiol ; 86(13)2020 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-32332139

RESUMEN

Microbial interactions abound in natural ecosystems and shape community structure and function. Substantial attention has been given to cataloging mechanisms by which microbes interact, but there is a limited understanding of the genetic landscapes that promote or hinder microbial interactions. We previously developed a mutualistic coculture pairing Escherichia coli and Rhodopseudomonas palustris, wherein E. coli provides carbon to R. palustris in the form of glucose fermentation products and R. palustris fixes N2 gas and provides nitrogen to E. coli in the form of NH4+ The stable coexistence and reproducible trends exhibited by this coculture make it ideal for interrogating the genetic underpinnings of a cross-feeding mutualism. Here, we used random barcode transposon sequencing (RB-TnSeq) to conduct a genome-wide search for E. coli genes that influence fitness during cooperative growth with R. palustris RB-TnSeq revealed hundreds of genes that increased or decreased E. coli fitness in a mutualism-dependent manner. Some identified genes were involved in nitrogen sensing and assimilation, as expected given the coculture design. The other identified genes were involved in diverse cellular processes, including energy production and cell wall and membrane biogenesis. In addition, we discovered unexpected purine cross-feeding from R. palustris to E. coli, with coculture rescuing growth of an E. coli purine auxotroph. Our data provide insight into the genes and gene networks that can influence a cross-feeding mutualism and underscore that microbial interactions are not necessarily predictable a prioriIMPORTANCE Microbial communities impact life on Earth in profound ways, including driving global nutrient cycles and influencing human health and disease. These community functions depend on the interactions that resident microbes have with the environment and each other. Thus, identifying genes that influence these interactions will aid the management of natural communities and the use of microbial consortia as biotechnology. Here, we identified genes that influenced Escherichia coli fitness during cooperative growth with a mutualistic partner, Rhodopseudomonas palustris Although this mutualism centers on the bidirectional exchange of essential carbon and nitrogen, E. coli fitness was positively and negatively affected by genes involved in diverse cellular processes. Furthermore, we discovered an unexpected purine cross-feeding interaction. These results contribute knowledge on the genetic foundation of a microbial cross-feeding interaction and highlight that unanticipated interactions can occur even within engineered microbial communities.


Asunto(s)
Escherichia coli/genética , Aptitud Genética , Interacciones Microbianas/genética , Rhodopseudomonas/genética , Simbiosis/genética , Técnicas de Cocultivo , Estudio de Asociación del Genoma Completo
3.
Dev Biol ; 401(2): 220-35, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25769695

RESUMEN

The vertebrate brain arises from the complex organization of millions of neurons. Neurogenesis encompasses not only cell fate specification from neural stem cells, but also the terminal molecular and morphological maturation of neurons at correct positions within the brain. RE1-silencing transcription factor (Rest) is expressed in non-neural tissues and neuronal progenitors where it inhibits the terminal maturation of neurons by repressing hundreds of neuron-specific genes. Here we show that Rest repression of maturation is intimately linked with the migratory capability of zebrafish facial branchiomotor neurons (FBMNs), which undergo a characteristic tangential migration from hindbrain rhombomere (r) 4 to r6/r7 during development. We establish that FBMN migration is increasingly disrupted as Rest is depleted in zebrafish rest mutant embryos, such that around two-thirds of FBMNs fail to complete migration in mutants depleted of both maternal and zygotic Rest. Although Rest is broadly expressed, we show that de-repression or activation of Rest target genes only within FBMNs is sufficient to disrupt their migration. We demonstrate that this migration defect is due to precocious maturation of FBMNs, based on both morphological and molecular criteria. We further show that the Rest target gene and alternative splicing factor srrm4 is a key downstream regulator of maturation; Srrm4 knockdown partially restores the ability of FBMNs to migrate in rest mutants while preventing their precocious morphological maturation. Rest must localize to the nucleus to repress its targets, and its subcellular localization is highly regulated: we show that targeting Rest specifically to FBMN nuclei rescues FBMN migration in Rest-deficient embryos. We conclude that Rest functions in FBMN nuclei to inhibit maturation until the neurons complete their migration.


Asunto(s)
Nervio Facial/metabolismo , Neuronas Motoras/metabolismo , Células-Madre Neurales/metabolismo , Neurogénesis/genética , Proteínas Represoras/genética , Animales , Animales Modificados Genéticamente , Movimiento Celular/fisiología , Núcleo Celular/genética , Nervio Facial/citología , Técnicas de Silenciamiento del Gen , Morfolinos/genética , Proteínas del Tejido Nervioso/genética , Proteínas Represoras/biosíntesis , Rombencéfalo/embriología , Pez Cebra , Proteínas de Pez Cebra/genética
4.
Development ; 139(20): 3838-48, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22951640

RESUMEN

The transcriptional repressor Rest (Nrsf) recruits chromatin-modifying complexes to RE1 'silencer elements', which are associated with hundreds of neural genes. However, the requirement for Rest-mediated transcriptional regulation of embryonic development and cell fate is poorly understood. Conflicting views of the role of Rest in controlling cell fate have emerged from recent studies. To address these controversies, we examined the developmental requirement for Rest in zebrafish using zinc-finger nuclease-mediated gene targeting. We discovered that germ layer specification progresses normally in rest mutants despite derepression of target genes during embryogenesis. This analysis provides the first evidence that maternal rest is essential for repression of target genes during blastula stages. Surprisingly, neurogenesis proceeds largely normally in rest mutants, although abnormalities are observed within the nervous system, including defects in oligodendrocyte precursor cell development and a partial loss of facial branchiomotor neuron migration. Mutants progress normally through embryogenesis but many die as larvae (after 12 days). However, some homozygotes reach adulthood and are viable. We utilized an RE1/NRSE transgenic reporter system to dynamically monitor Rest activity. This analysis revealed that Rest is required to repress gene expression in mesodermal derivatives including muscle and notochord, as well as within the nervous system. Finally, we demonstrated that Rest is required for long-term repression of target genes in non-neural tissues in adult zebrafish. Our results point to a broad role for Rest in fine-tuning neural gene expression, rather than as a widespread regulator of neurogenesis or cell fate.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Neurogénesis , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Pez Cebra/crecimiento & desarrollo , Pez Cebra/genética , Animales , Movimiento Celular , Transcripción Genética , Pez Cebra/embriología , Pez Cebra/metabolismo
5.
Dev Dyn ; 241(10): 1603-15, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22836912

RESUMEN

BACKGROUND: The vertebrate nuclear receptor subfamily 2, group f (nr2f) genes encode orphan receptors that have the capacity to act as negative regulators of retinoic acid (RA) signaling. RESULTS: We describe embryonic and larval expression of four of the six zebrafish nr2f genes, nr2f1a, nr2f1b, nr2f2, and nr2f5. These genes show highly regulated patterns of expression within the central nervous system, including in the developing hindbrain, as well as in the mesoderm and endoderm. We also investigated the role of RA and fibroblast growth factor (Fgf) signaling in regulating early nr2f gene expression. RA is not required for nr2f expression in the hindbrain; however, exogenous RA can repress this expression. Conversely, we find that RA positively regulates nr2f1a expression in trunk endoderm and mesoderm. Fgf signaling is not required for nr2f expression onset in the hindbrain; however, it may play a role in maintaining rhombomere-specific expression. CONCLUSIONS: We report detailed expression analysis of four nr2f genes in all three germ layers. The onset of nr2f expression in the hindbrain does not require RA or Fgf signals. Our finding that RA positively regulates nr2f1a expression in the trunk supports the possibility that Nr2fs function in a negative feedback loop to modulate RA signaling in this region.


Asunto(s)
Factores de Transcripción COUP/metabolismo , Sistema Nervioso Central/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Transducción de Señal/fisiología , Tretinoina/metabolismo , Pez Cebra/embriología , Animales , Factores de Transcripción COUP/genética , Cartilla de ADN/genética , Perfilación de la Expresión Génica , Hibridación in Situ
6.
Biochemistry ; 46(46): 13297-309, 2007 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-17960911

RESUMEN

The purine riboswitch is one of a number of mRNA elements commonly found in the 5'-untranslated region capable of controlling expression in a cis-fashion via its ability to directly bind small-molecule metabolites. Extensive biochemical and structural analysis of the nucleobase-binding domain of the riboswitch, referred to as the aptamer domain, has revealed that the mRNA recognizes its cognate ligand using an intricately folded three-way junction motif that completely encapsulates the ligand. High-affinity binding of the purine nucleobase is facilitated by a distal loop-loop interaction that is conserved between both the adenine and guanine riboswitches. To understand the contribution of conserved nucleotides in both the three-way junction and the loop-loop interaction of this RNA, we performed a detailed mutagenic survey of these elements in the context of an adenine-responsive variant of the xpt-pbuX guanine riboswitch from Bacillus subtilis. The varying ability of these mutants to bind ligand as measured by isothermal titration calorimetry uncovered the conserved nucleotides whose identity is required for purine binding. Crystallographic analysis of the bound form of five mutants and chemical probing of their free state demonstrate that the identity of several universally conserved nucleotides is not essential for formation of the RNA-ligand complex but rather for maintaining a binding-competent form of the free RNA. These data show that conservation patterns in riboswitches arise from a combination of formation of the ligand-bound complex, promoting an open form of the free RNA, and participating in the secondary structural switch with the expression platform.


Asunto(s)
Regiones no Traducidas 5'/química , Purinas/química , ARN Bacteriano/química , Secuencias Reguladoras de Ácido Ribonucleico , Regiones no Traducidas 5'/metabolismo , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/metabolismo , Bacillus subtilis/metabolismo , Secuencia de Bases , Sitios de Unión , Cristalografía por Rayos X , Guanina/química , Guanina/metabolismo , Ligandos , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Conformación de Ácido Nucleico , Purinas/metabolismo , ARN Bacteriano/metabolismo , ARN Mensajero/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA