Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Dis Model Mech ; 16(9)2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37691628

RESUMEN

Sequencing of human genome samples has unearthed genetic variants for which functional testing is necessary to validate their clinical significance. We used the Drosophila system to analyze a variant of unknown significance in the human congenital heart disease gene NKX2.5 (also known as NKX2-5). We generated an R321N allele of the NKX2.5 ortholog tinman (tin) to model a human K158N variant and tested its function in vitro and in vivo. The R321N Tin isoform bound poorly to DNA in vitro and was deficient in activating a Tin-dependent enhancer in tissue culture. Mutant Tin also showed a significantly reduced interaction with a Drosophila T-box cardiac factor named Dorsocross1. We generated a tinR321N allele using CRISPR/Cas9, for which homozygotes were viable and had normal heart specification, but showed defects in the differentiation of the adult heart that were exacerbated by further loss of tin function. We propose that the human K158N variant is pathogenic through causing a deficiency in DNA binding and a reduced ability to interact with a cardiac co-factor, and that cardiac defects might arise later in development or adult life.


Asunto(s)
Proteínas de Drosophila , Cardiopatías Congénitas , Animales , Humanos , Drosophila , Genes Homeobox , Corazón , Cardiopatías Congénitas/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Regulación del Desarrollo de la Expresión Génica
2.
bioRxiv ; 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37425758

RESUMEN

Sequencing of human genome samples has unearthed genetic variants for which functional testing is necessary to validate their clinical significance. We used the Drosophila system to analyze a variant of unknown significance in the human congenital heart disease gene, Nkx2 . 5 . We generated an R321N allele of the Nkx2 . 5 ortholog tinman ( tin ) to model a human K158N variant and tested its function in vitro and in vivo. The R321N Tin isoform bound poorly to DNA in vitro and was deficient in activating a Tin-dependent enhancer in tissue culture. Mutant Tin also showed a significantly reduced interaction with a Drosophila Tbox cardiac factor named Dorsocross1. We generated a tin R321N allele using CRISPR/Cas9, for which homozygotes were viable and had normal heart specification, but showed defects in the differentiation of the adult heart that were exacerbated by further loss of tin function. We conclude that the human K158N mutation is likely pathogenic through causing both a deficiency in DNA binding and a reduced ability to interact with a cardiac cofactor, and that cardiac defects might arise later in development or adult life.

3.
Dev Biol ; 464(1): 1-10, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32445643

RESUMEN

Indirect flight muscles (IFMs) are the largest muscles in Drosophila and are made up of hundreds of myonuclei. The generation of these giant muscles requires a large pool of wing disc associated adult muscle precursors (AMPs), however the factors that control proliferation to form this myoblast pool are incompletely known. Here, we examine the role of fibroblast growth factor (FGF) signaling in the proliferation of wing disc associated myoblasts. We find that the components of FGF signaling are expressed in myoblasts and surrounding epithelial cells of the wing disc. Next, we show that attenuation of FGF signaling results in a diminished myoblast pool. This reduction in the pool size is due to decreased myoblast proliferation. By contrast, activating the FGF signaling pathway increases the myoblast pool size and restores the proliferative capacity of FGF knockdown flies. Finally, our results demonstrate that the FGF receptor Heartless acts through up-regulating ß-catenin/Armadillo signaling to promote myoblast proliferation. Our studies identify a novel role for FGF signaling during IFM formation and uncover the mechanism through which FGF coordinates with Wingless signaling to promote myoblast proliferation.


Asunto(s)
Proliferación Celular , Proteínas de Drosophila/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Discos Imaginales/embriología , Mioblastos/metabolismo , Transducción de Señal , Proteína Wnt1/metabolismo , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster , Factores de Crecimiento de Fibroblastos/genética , Discos Imaginales/citología , Mioblastos/citología , Proteína Wnt1/genética
4.
PLoS One ; 14(6): e0217906, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31158257

RESUMEN

Understanding the transcriptional pathways controlling tissue-specific gene expression is critical to unraveling the complex regulatory networks that underlie developmental mechanisms. Here, we assessed how the Drosophila crossveinless (cv) gene, that encodes a BMP-binding factor, is transcriptionally regulated in the developing embryonic tracheal system. We identify an upstream regulatory region of cv that promotes reporter gene expression in the tracheal precursors. We further demonstrate that this promoter region is directly responsive to the basic, helix-loop-helix-PAS domain factors Trachealess (Trh) and Tango (Tgo), that function to specify tracheal fate. Moreover, cv expression in embryos is lost in trh mutants, and the integrity of the Trh/Tgo binding sites are required for promoter-lacZ expression. These findings for the first time elucidate the transcriptional regulation of one member of a family of BMP binding proteins, that have diverse functions in animal development.


Asunto(s)
Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Tráquea/citología , Factores de Transcripción/metabolismo , Transcripción Genética , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Elementos de Facilitación Genéticos/genética , Regulación del Desarrollo de la Expresión Génica , Sitios Genéticos , Regiones Promotoras Genéticas/genética
5.
Methods Mol Biol ; 1889: 267-281, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30367420

RESUMEN

Drosophila is a useful model organism for studying the molecular signatures that define specific muscle types during myogenesis. It possesses significant genetic conservation with humans for muscle disease causing genes and a lack of redundancy that simplifies functional analysis. Traditional molecular methods can be utilized to understand muscle developmental processes such as Western blots, in situ hybridizations, RT-PCR and RNAseq, to name a few. However, one challenge for these molecular methods is the ability to dissect different muscle types. In this protocol we describe some useful techniques for extracting muscles from the pupal and adult stages of development using flight and jump muscles as an example.


Asunto(s)
Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Genómica , Desarrollo de Músculos , Músculos/metabolismo , Proteómica , Animales , Genómica/métodos , Técnicas Histológicas , Desarrollo de Músculos/genética , Proteómica/métodos
7.
Artículo en Inglés | MEDLINE | ID: mdl-27695700

RESUMEN

The Drosophila cardiac tube was once thought to be a simple linear structure, however research over the past 15 years has revealed significant cellular and molecular complexity to this organ. Prior reviews have focused upon the gene regulatory networks responsible for the specification of the cardiac field and the activation of cardiac muscle structural genes. Here we focus upon highlighting the existence, function, and development of unique cell types within the dorsal vessel, and discuss their correspondence to analogous structures in the vertebrate heart.

8.
Biochem Mol Biol Educ ; 44(3): 263-75, 2016 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-27009801

RESUMEN

CRISPR/Cas9 genome editing technology is used in the manipulation of genome sequences and gene expression. Because of the ease and rapidity with which genes can be mutated using CRISPR/Cas9, we sought to determine if a single-semester undergraduate class could be successfully taught, wherein students isolate mutants for specific genes using CRISPR/Cas9. Six students were each assigned a single Drosophila gene, for which no mutants currently exist. Each student designed and created plasmids to encode single guide RNAs that target their selected gene; injected the plasmids into Cas9-expressing embryos, in order to delete the selected gene; carried out a three-generation cross to test for germline transmission of a mutated allele and generate a stable stock of the mutant; and characterized the mutant alleles by PCR and sequencing. Three genes out of six were successfully mutated. Pre- and post- survey evaluations of the students in the class revealed that student attitudes towards their research competencies increased, although the changes were not statistically significant. We conclude that it is feasible to develop a laboratory genome editing class, to provide effective laboratory training to undergraduate students, and to generate mutant lines for use by the broader scientific community. © 2016 by The International Union of Biochemistry and Molecular Biology, 44:263-275, 2016.


Asunto(s)
Sistemas CRISPR-Cas/genética , Proteínas de Drosophila/genética , Drosophila/genética , Marcación de Gen/métodos , Biología Molecular/educación , Edición de ARN/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Femenino , Ingeniería Genética , Genoma de los Insectos , Masculino , Mutación/genética , Plásmidos/genética
9.
Dev Biol ; 413(1): 16-25, 2016 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-26983369

RESUMEN

The inflow tracts of the embryonic Drosophila cardiac tube, termed ostia, arise in its posterior three segments from cardiac cells that co-express the homeotic transcription factor Abdominal-A (abdA), the orphan nuclear receptor Seven-up (Svp), and the signaling molecule Wingless (Wg). To define the roles of these factors in inflow tract development, we assessed their function in inflow tract formation. We demonstrate, using several criteria, that abdA, svp, and wg are each critical for normal inflow tract formation. We further show that Wg acts in an autocrine manner to impact ostia fate, and that it mediates this effect at least partially through the canonical Wg signaling pathway. By contrast, neither wg expression nor Wg signaling are sufficient for inflow tract formation when expressed in anterior Svp cells that do not normally form inflow tracts in the embryo. Instead, ectopic abd-A expression throughout the cardiac tube is required for the formation of ectopic inflow tracts, indicating that autocrine Wg signaling must be supplemented by additional Hox-dependent factors to effect inflow tract formation. Taken together, these studies define important cellular and molecular events that contribute to cardiac inflow tract development in Drosophila. Given the broad conservation of the cardiac regulatory network through evolution, our studies provide insight into mechanisms of cardiac development in higher animals.


Asunto(s)
Proteínas de Drosophila/fisiología , Drosophila melanogaster/embriología , Regulación del Desarrollo de la Expresión Génica , Corazón/embriología , Transducción de Señal , Animales , Aorta/embriología , Cruzamientos Genéticos , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Perfilación de la Expresión Génica , Genes Homeobox/genética , Genes de Insecto , Marcadores Genéticos , Genotipo , Homocigoto , Hibridación in Situ , Proteínas Nucleares/metabolismo , Receptores de Esteroides/metabolismo , Factores de Transcripción/metabolismo , Proteína Wnt1/metabolismo
10.
PLoS One ; 10(7): e0132965, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26225919

RESUMEN

Expression of the MADS domain transcription factor Myocyte Enhancer Factor 2 (MEF2) is regulated by numerous and overlapping enhancers which tightly control its transcription in the mesoderm. To understand how Mef2 expression is controlled in the heart, we identified a late stage Mef2 cardiac enhancer that is active in all heart cells beginning at stage 14 of embryonic development. This enhancer is regulated by the NK-homeodomain transcription factor Tinman, and the GATA transcription factor Pannier through both direct and indirect interactions with the enhancer. Since Tinman, Pannier and MEF2 are evolutionarily conserved from Drosophila to vertebrates, and since their vertebrate homologs can convert mouse fibroblast cells to cardiomyocytes in different activator cocktails, we tested whether over-expression of these three factors in vivo could ectopically activate known cardiac marker genes. We found that mesodermal over-expression of Tinman and Pannier resulted in approximately 20% of embryos with ectopic Hand and Sulphonylurea receptor (Sur) expression. By adding MEF2 alongside Tinman and Pannier, a dramatic expansion in the expression of Hand and Sur was observed in almost all embryos analyzed. Two additional cardiac markers were also expanded in their expression. Our results demonstrate the ability to initiate ectopic cardiac fate in vivo by the combination of only three members of the conserved Drosophila cardiac transcription network, and provide an opportunity for this genetic model system to be used to dissect the mechanisms of cardiac specification.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Miocardio/citología , Miocardio/metabolismo , Factores Reguladores Miogénicos/metabolismo , Proteínas Represoras/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Sitios de Unión/genética , Secuencia de Consenso , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión Génica , Genes de Insecto , Corazón/embriología , Ratones , Datos de Secuencia Molecular , Factores Reguladores Miogénicos/genética , Proteínas Represoras/genética , Homología de Secuencia de Aminoácido , Receptores de Sulfonilureas/genética , Receptores de Sulfonilureas/metabolismo , Transactivadores/genética , Factores de Transcripción/genética
11.
Dev Biol ; 400(2): 266-76, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25704510

RESUMEN

Understanding the regulatory circuitry controlling myogenesis is critical to understanding developmental mechanisms and developmentally-derived diseases. We analyzed the transcriptional regulation of a Drosophila myogenic repressor gene, Holes in muscles (Him). Previously, Him was shown to inhibit Myocyte enhancer factor-2 (MEF2) activity, and is expressed in myoblasts but not differentiating myotubes. We demonstrate that different phases of Him embryonic expression arises through the actions of different enhancers, and we characterize the enhancer required for its early mesoderm expression. This Him early mesoderm enhancer contains two conserved binding sites for the basic helix-loop-helix regulator Twist, and one binding site for the NK homeodomain protein Tinman. The sites for both proteins are required for enhancer activity in early embryos. Twist and Tinman activate the enhancer in tissue culture assays, and ectopic expression of either factor is sufficient to direct ectopic expression of a Him-lacZ reporter, or of the endogenous Him gene. Moreover, sustained expression of twist in the mesoderm up-regulates mesodermal Him expression in late embryos. Our findings provide a model to define mechanistically how Twist can both promotes myogenesis through direct activation of Mef2, and can place a brake on myogenesis, through direct activation of Him.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas Represoras/metabolismo , Transactivadores/metabolismo , Transcripción Genética , Proteína 1 Relacionada con Twist/metabolismo , Secuencia de Aminoácidos , Animales , Drosophila/clasificación , Drosophila/genética , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Embrión no Mamífero/metabolismo , Mesodermo/metabolismo , Datos de Secuencia Molecular , Desarrollo de Músculos , Miocitos Cardíacos/metabolismo , Factores Reguladores Miogénicos/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos , Alineación de Secuencia
12.
Dev Cell ; 23(3): 664-73, 2012 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-22975331

RESUMEN

Here we identify a key role for the homeodomain proteins Extradenticle (Exd) and Homothorax (Hth) in the specification of muscle fiber fate in Drosophila. exd and hth are expressed in the fibrillar indirect flight muscles but not in tubular jump muscles, and manipulating exd or hth expression converts one muscle type into the other. In the flight muscles, exd and hth are genetically upstream of another muscle identity gene, salm, and are direct transcriptional regulators of the signature flight muscle structural gene, Actin88F. Exd and Hth also impact muscle identity in other somatic muscles of the body by cooperating with Hox factors. Because mammalian orthologs of exd and hth also contribute to muscle gene regulation, our studies suggest that an evolutionarily conserved genetic pathway determines muscle fiber differentiation.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Proteínas de Homeodominio/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Factores de Transcripción/metabolismo , Animales , Diferenciación Celular , Drosophila/citología , Proteínas de Drosophila/genética , Proteínas de Homeodominio/genética , Fibras Musculares Esqueléticas/citología , Factores de Transcripción/genética
13.
Dev Biol ; 361(2): 191-207, 2012 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-22008792

RESUMEN

Identifying the genetic program that leads to formation of functionally and morphologically distinct muscle fibers is one of the major challenges in developmental biology. In Drosophila, the Myocyte Enhancer Factor-2 (MEF2) transcription factor is important for all types of embryonic muscle differentiation. In this study we investigated the role of MEF2 at different stages of adult skeletal muscle formation, where a diverse group of specialized muscles arises. Through stage- and tissue-specific expression of Mef2 RNAi constructs, we demonstrate that MEF2 is critical at the early stages of adult myoblast fusion: mutant myoblasts are attracted normally to their founder cell targets, but are unable to fuse to form myotubes. Interestingly, ablation of Mef2 expression at later stages of development showed MEF2 to be more dispensable for structural gene expression: after myoblast fusion, Mef2 knockdown did not interrupt expression of major structural gene transcripts, and myofibrils were formed. However, the MEF2-depleted fibers showed impaired integrity and a lack of fibrillar organization. When Mef2 RNAi was induced in muscles following eclosion, we found no adverse effects of attenuating Mef2 function. We conclude that in the context of adult myogenesis, MEF2 remains an essential factor, participating in control of myoblast fusion, and myofibrillogenesis in developing myotubes. However, MEF2 does not show a major requirement in the maintenance of muscle structural gene expression. Our findings point to the importance of a diversity of regulatory factors that are required for the formation and function of the distinct muscle fibers found in animals.


Asunto(s)
Envejecimiento/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Desarrollo de Músculos , Factores Reguladores Miogénicos/metabolismo , Animales , Fusión Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Vuelo Animal , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Genes de Insecto/genética , Genotipo , Desarrollo de Músculos/genética , Fibras Musculares Esqueléticas/metabolismo , Músculos/metabolismo , Músculos/patología , Mioblastos/metabolismo , Mioblastos/patología , Factores Reguladores Miogénicos/genética , Fenotipo , Interferencia de ARN , Reproducibilidad de los Resultados
14.
Methods Mol Biol ; 798: 127-52, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22130835

RESUMEN

The Drosophila system has been invaluable in providing important insights into mesoderm specification, muscle specification, myoblast fusion, muscle differentiation, and myofibril assembly. Here, we present a series of Drosophila protocols that enable the researcher to visualize muscle precursors and differentiated muscles, at all stages of development. In doing so, we also highlight the variety of techniques that are used to create these findings. These protocols are directly used for the Drosophila system, and are provided with explanatory detail to enable the researcher to apply them to other systems.


Asunto(s)
Drosophila melanogaster/embriología , Drosophila melanogaster/crecimiento & desarrollo , Desarrollo de Músculos , Músculo Esquelético/embriología , Músculo Esquelético/crecimiento & desarrollo , Animales , Tipificación del Cuerpo/fisiología , Embrión no Mamífero/metabolismo , Genes Reporteros/genética , Inmunohistoquímica/métodos , Hibridación in Situ/métodos , Larva/metabolismo , Microscopía Fluorescente , Coloración y Etiquetado
15.
Genetics ; 183(1): 107-17, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19564485

RESUMEN

Temperature-sensitive (TS) mutations are a useful tool for elucidating gene function where a gene of interest is essential at multiple stages of development. However, the molecular mechanisms behind TS alleles vary. TS mutations of the myogenic regulator Myocyte enhancer factor-2 (MEF2) in Drosophila arise in the heteroallelic combination Mef2(30-5)/Mef2(44-5). We show that the 30-5 mutation affects the N-terminal MADS domain, causing impaired DNA binding ability and failure of homozygous mutants to survive to adulthood. The 44-5 mutation deletes a downstream splice acceptor site and results in a truncated protein that is unable to activate MEF2 targets. 44-5 homozygotes consequently show severely impaired myogenesis and die as embryos. We propose that in heteroallelic mutants at the permissive temperature, 30-5/44-5 heterodimers form and have a sufficiently stable interaction with DNA to activate myogenic gene expression; at the restrictive temperature, 44-5 homodimers displace 30-5/44-5 heterodimers from target genes, thus acting in a dominant-negative manner. To test this, we show that 30-5/44-5 heterodimers can form, and we study additional Mef2 alleles for complementation with the 30-5 allele. An allele affecting the DNA binding domain fails to complement 30-5, whereas two alleles affecting downstream residues show temperature-dependent complementation. Thus, by combining one MEF2 isoform having weakened DNA binding ability with a second truncated MEF2 mutant that has lost its activation ability, a TS form of intragenic complementation can be generated. These findings will provide new insight and guidance into the functions of dimeric proteins and how they might be engineered to generate TS combinations.


Asunto(s)
Drosophila melanogaster/genética , Músculos/embriología , Mutación/fisiología , Factores Reguladores Miogénicos/genética , Temperatura , Alelos , Animales , Células Cultivadas , ADN/metabolismo , Dimerización , Drosophila melanogaster/embriología , Drosophila melanogaster/metabolismo , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica/genética , Factores de Transcripción MEF2 , Modelos Biológicos , Músculos/metabolismo , Factores Reguladores Miogénicos/química , Factores Reguladores Miogénicos/metabolismo , Factores Reguladores Miogénicos/fisiología , Fenotipo , Unión Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/fisiología , Estabilidad Proteica , Estructura Terciaria de Proteína/genética
16.
Dev Biol ; 288(2): 612-21, 2005 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-16325168

RESUMEN

The steroid hormone 20-hydroxyecdysone (ecdysone) activates a relatively small number of immediate-early genes during Drosophila pupal development, yet is able to orchestrate distinct differentiation events in a wide variety of tissues. Here, we demonstrate that expression of the muscle differentiation gene Myocyte enhancer factor-2 (Mef2) is normally delayed in twist-expressing adult myoblasts until the end of the third larval instar. The late up-regulation of Mef2 transcription in larval myoblasts is an ecdysone-dependent event which acts upon an identified Mef2 enhancer, and we identify enhancer sequences required for up-regulation. We also present evidence that the ecdysone-induced Broad Complex of zinc finger transcription factor genes is required for full activation of the myogenic program in these cells. Since forced early expression of Mef2 in adult myoblasts leads to premature muscle differentiation, our results explain how and why the adult muscle differentiation program is attenuated prior to pupal development. We propose a mechanism for the initiation of adult myogenesis, whereby twist expression in myoblasts provides a cellular context upon which an extrinsic signal builds to control muscle-specific differentiation events, and we discuss the general relevance of this model for gene regulation in animals.


Asunto(s)
Drosophila melanogaster/metabolismo , Ecdisona/fisiología , Mioblastos/metabolismo , Animales , Diferenciación Celular , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Elementos de Facilitación Genéticos , Metamorfosis Biológica , Desarrollo de Músculos , Mioblastos/citología , Factores Reguladores Miogénicos/genética , Factores Reguladores Miogénicos/metabolismo , Regulación hacia Arriba
17.
Gene Expr Patterns ; 4(2): 183-90, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15161098

RESUMEN

The success of the genomic sequencing programs allows the discovery of additional family members of genes encoding known functions. This is the case of the Troponin C gene repertoire in Drosophila melanogaster. We have found two new Troponin C genes, DmTpnC41F and DmTpnC25D, increasing to five the total number of Troponin C genes identified in this species. The comparative characterization of the five Troponin C genes in D. melanogaster demonstrates considerable variation in gene structure and expression pattern. Expression of one gene, DmTpnC41F, has more restricted tissue specificity than the rest of the TpnC genes and, with the chromosomically linked DmTpnC41C, is expressed specifically in the adult thorax. The new gene, DmTpnC25D is expressed during development more broadly than the rest. In adults, it is highly expressed in the adult head. Finally, the other two genes, DmTpnC47D and DmTpnC73F, show a high embryonic/larval expression and in adults are expressed almost exclusively in the abdomens. The functional adaptive changes that may have evolved during the expansion of this gene family are briefly discussed in terms of the expression patterns, gene and protein structures leading to a simpler, more systematic nomenclature of the gene family.


Asunto(s)
Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Expresión Génica/fisiología , Troponina C/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Perfilación de la Expresión Génica , Datos de Secuencia Molecular , Alineación de Secuencia , Análisis de Secuencia de ADN , Troponina C/metabolismo
18.
Dev Biol ; 267(2): 536-47, 2004 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-15013812

RESUMEN

The myocyte enhancer factor-2 (MEF2) transcription factor plays a central role in the activation and maintenance of muscle gene expression in fruit flies and vertebrates. The mechanism of action and downstream target genes of MEF2 have been defined in considerable detail, but relatively little is known about the mechanisms that regulate MEF2 expression during muscle development. Here we demonstrate that MEF2 maintains its own expression in all differentiated muscle cell types during late embryonic and larval development in Drosophila by binding a conserved MEF2 site in a muscle-specific regulatory enhancer. Ectopic expression of Mef2 is sufficient to directly activate this enhancer in some, but not all, non-muscle cells. Furthermore, activation of the Mef2 enhancer normally in muscle cells and ectopically in non-muscle cells is dependent upon the integrity of the MEF2 binding site. These findings suggest an evolutionarily conserved mechanism whereby MEF2 can stabilize the muscle phenotype by sustaining its own expression through a myogenic autoregulatory loop.


Asunto(s)
Proteínas de Unión al ADN/genética , Drosophila/genética , Elementos de Facilitación Genéticos/genética , Regulación de la Expresión Génica , Desarrollo de Músculos , Factores de Transcripción/genética , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Cruzamientos Genéticos , Cartilla de ADN , Drosophila/crecimiento & desarrollo , Proteínas de Drosophila , Ensayo de Cambio de Movilidad Electroforética , Evolución Molecular , Perfilación de la Expresión Génica , Vectores Genéticos/genética , Inmunohistoquímica , Larva/crecimiento & desarrollo , Factores de Transcripción MEF2 , Factores Reguladores Miogénicos
19.
Development ; 129(21): 5019-27, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12397110

RESUMEN

The Drosophila melanogaster dorsal vessel is a linear organ that pumps blood through the body. Blood enters the dorsal vessel in a posterior chamber termed the heart, and is pumped in an anterior direction through a region of the dorsal vessel termed the aorta. Although the genes that specify dorsal vessel cell fate are well understood, there is still much to be learned concerning how cell fate in this linear tube is determined in an anteroposterior manner, either in Drosophila or in any other animal. We demonstrate that the formation of a morphologically and molecularly distinct heart depends crucially upon the homeotic segmentation gene abdominal-A (abd-A). abd-A expression in the dorsal vessel was detected only in the heart, and overexpression of abd-A induced heart fate in the aorta in a cell-autonomous manner. Mutation of abd-A resulted in a loss of heart-specific markers. We also demonstrate that abd-A and sevenup co-expression in cardial cells defined the location of ostia, or inflow tracts. Other genes of the Bithorax Complex do not appear to participate in heart specification, although high level expression of Ultrabithorax is capable of inducing a partial heart fate in the aorta. These findings for the first time demonstrate a specific involvement for Hox genes in patterning the muscular circulatory system, and suggest a mechanism of broad relevance for animal heart patterning.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Genes Homeobox , Genes de Insecto , Corazón/embriología , Proteínas de Homeodominio , Proteínas Nucleares , Factores de Transcripción , Animales , Aorta/embriología , Tipificación del Cuerpo/genética , Proteínas de Unión al ADN/genética , Drosophila melanogaster/citología , Regulación del Desarrollo de la Expresión Génica , Músculo Esquelético/embriología , Miocardio/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA