Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Cell ; 84(15): 2822-2837.e11, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39025074

RESUMEN

Histone proteins affect gene expression through multiple mechanisms, including through exchange with histone variants. Recent findings link histone variants to neurological disorders, yet few are well studied in the brain. Most notably, widely expressed variants of H2B remain elusive. We applied recently developed antibodies, biochemical assays, and sequencing approaches to reveal broad expression of the H2B variant H2BE and defined its role in regulating chromatin structure, neuronal transcription, and mouse behavior. We find that H2BE is enriched at promoters, and a single unique amino acid allows it to dramatically enhance chromatin accessibility. Further, we show that H2BE is critical for synaptic gene expression and long-term memory. Together, these data reveal a mechanism linking histone variants to chromatin accessibility, transcriptional regulation, neuronal function, and memory. This work further identifies a widely expressed H2B variant and uncovers a single histone amino acid with profound effects on genomic structure.


Asunto(s)
Cromatina , Histonas , Memoria a Largo Plazo , Neuronas , Sinapsis , Histonas/metabolismo , Histonas/genética , Animales , Cromatina/metabolismo , Cromatina/genética , Memoria a Largo Plazo/fisiología , Neuronas/metabolismo , Ratones , Sinapsis/metabolismo , Sinapsis/genética , Regiones Promotoras Genéticas , Ratones Endogámicos C57BL , Regulación de la Expresión Génica , Transcripción Genética , Masculino , Humanos
2.
bioRxiv ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38352334

RESUMEN

Regulation of histone proteins affects gene expression through multiple mechanisms including exchange with histone variants. However, widely expressed variants of H2B remain elusive. Recent findings link histone variants to neurological disorders, yet few are well studied in the brain. We applied new tools including novel antibodies, biochemical assays, and sequencing approaches to reveal broad expression of the H2B variant H2BE, and defined its role in regulating chromatin structure, neuronal transcription, and mouse behavior. We find that H2BE is enriched at promoters and a single unique amino acid allows it to dramatically enhance chromatin accessibility. Lastly, we show that H2BE is critical for synaptic gene expression and long-term memory. Together, these data reveal a novel mechanism linking histone variants to chromatin regulation, neuronal function, and memory. This work further identifies the first widely expressed H2B variant and uncovers a single histone amino acid with profound effects on genomic structure.

3.
J Gerontol A Biol Sci Med Sci ; 78(3): 397-406, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36342748

RESUMEN

Pharmacological treatments can extend the life span of mice. For optimal translation in humans, treatments should improve health during aging, and demonstrate efficacy when started later in life. Acarbose (ACA) and rapamycin (RAP) extend life span in mice when treatment is started early or later in life. Both drugs can also improve some indices of healthy aging, although there has been little systematic study of whether health benefits accrue differently depending on the age at which treatment is started. Here we compare the effects of early (4 months) versus late (16 months) onset ACA or RAP treatment on physical function and cardiac structure in genetically heterogeneous aged mice. ACA or RAP treatment improve rotarod acceleration and endurance capacity compared to controls, with effects that are largely similar in mice starting treatment from early or late in life. Compared to controls, cardiac hypertrophy is reduced by ACA or RAP in both sexes regardless of age at treatment onset. ACA has a greater effect on the cardiac lipidome than RAP, and the effects of early-life treatment are recapitulated by late-life treatment. These results indicate that late-life treatment with these drugs provide at least some of the benefits of life long treatment, although some of the benefits occur only in males, which could lead to sex differences in health outcomes later in life.


Asunto(s)
Acarbosa , Sirolimus , Ratones , Femenino , Humanos , Masculino , Animales , Sirolimus/farmacología , Acarbosa/farmacología , Envejecimiento , Longevidad , Rendimiento Físico Funcional
4.
JCI Insight ; 5(21)2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-32990683

RESUMEN

With an expanding aging population burdened with comorbidities, there is considerable interest in treatments that optimize health in later life. Acarbose (ACA), a drug used clinically to treat type 2 diabetes mellitus (T2DM), can extend mouse life span with greater effect in males than in females. Using a genetically heterogeneous mouse model, we tested the ability of ACA to ameliorate functional, pathological, and biochemical changes that occur during aging, and we determined which of the effects of age and drug were sex dependent. In both sexes, ACA prevented age-dependent loss of body mass, in addition to improving balance/coordination on an accelerating rotarod, rotarod endurance, and grip strength test. Age-related cardiac hypertrophy was seen only in male mice, and this male-specific aging effect was attenuated by ACA. ACA-sensitive cardiac changes were associated with reduced activation of cardiac growth-promoting pathways and increased abundance of peroxisomal proteins involved in lipid metabolism. ACA further ameliorated age-associated changes in cardiac lipid species, particularly lysophospholipids - changes that have previously been associated with aging, cardiac dysfunction, and cardiovascular disease in humans. In the liver, ACA had pronounced effects on lipid handling in both sexes, reducing hepatic lipidosis during aging and shifting the liver lipidome in adulthood, particularly favoring reduced triglyceride (TAG) accumulation. Our results demonstrate that ACA, already in clinical use for T2DM, has broad-ranging antiaging effects in multiple tissues, and it may have the potential to increase physical function and alter lipid biology to preserve or improve health at older ages.


Asunto(s)
Acarbosa/farmacología , Envejecimiento/efectos de los fármacos , Cardiomegalia/tratamiento farmacológico , Corazón/efectos de los fármacos , Lipidosis/tratamiento farmacológico , Hepatopatías/tratamiento farmacológico , Condicionamiento Físico Animal , Factores de Edad , Animales , Femenino , Inhibidores de Glicósido Hidrolasas/farmacología , Lipidosis/metabolismo , Hepatopatías/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Factores Sexuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA