Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Plant Physiol ; 261: 153434, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34020275

RESUMEN

The commonly used Arabidopsis thaliana natural accessions Columbia (Col-0) and Wassilewskija (Ws) are known to differ in their metal sensitivity, with Col-0 being more sensitive to copper (Cu) and cadmium (Cd) than Ws. As both Cu and Cd are known to affect Cu homeostasis, it was investigated whether this process is part of an accession-specific mechanism underlying their difference in metal sensitivity. As roots are the first contact point during metal exposure, responses were compared between roots of both accessions of hydroponically grown plants exposed to excess Cu or Cd for 24 and 72 h. Root Cu levels increased in both accessions under Cu and Cd exposure. However, under Cu exposure, the downregulation of Cu transporter (COPT) genes in combination with a more pronounced upregulation of metallothionein gene MT2b indicated that Ws plants coped better with the elevated Cu concentrations. The Cd-induced disturbance in Cu homeostasis was more efficiently counteracted in roots of Ws plants than in Col-0 plants. This was indicated by a higher upregulation of the SPL7-mediated pathway, crucial in the regulation of the Cu homeostasis response. In conclusion, maintaining the Cu homeostasis response in roots is key to accession-specific differences in Cu and Cd sensitivity.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cadmio/metabolismo , Cobre/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Homeostasis , Raíces de Plantas/genética , Raíces de Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA