Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(28): 12664-12673, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38953777

RESUMEN

Investigating the fate of persistent organic pollutants in water distribution systems (WDSs) is of great significance for preventing human health risks. The role of iron corrosion scales in the migration and transformation of organics in such systems remains unclear. Herein, we determined that hydroxyl (•OH), chlorine, and chlorine oxide radicals are generated by Fenton-like reactions due to the coexistence of oxygen vacancy-related Fe(II) on goethite (a major constituent of iron corrosion scales) and hypochlorous acid (HClO, the main reactive chlorine species of residual chlorine at pH ∼ 7.0). •OH contributed mostly to the decomposition of atrazine (ATZ, model compound) more than other radicals, producing a series of relatively low-toxicity small molecular intermediates. A simplified kinetic model consisting of mass transfer of ATZ and HClO, •OH generation, and ATZ oxidation by •OH on the goethite surface was developed to simulate iron corrosion scale-triggered residual chlorine oxidation of organic compounds in a WDS. The model was validated by comparing the fitting results to the experimental data. Moreover, the model was comprehensively applicable to cases in which various inorganic ions (Ca2+, Na+, HCO3-, and SO42-) and natural organic matter were present. With further optimization, the model may be employed to predict the migration and accumulation of persistent organic pollutants under real environmental conditions in the WDSs.


Asunto(s)
Contaminantes Químicos del Agua , Cinética , Radicales Libres/química , Contaminantes Químicos del Agua/química , Oxidación-Reducción , Hierro/química , Compuestos de Hierro/química , Minerales/química
2.
Water Res ; 259: 121805, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38838481

RESUMEN

Understanding the structure and activity of activated sludge (AS) microbiome is key to ensuring optimal operation of wastewater treatment processes. While high-throughput metagenomics offers a comprehensive view of AS microbiome, its cost and time demands warrant alternative approaches. This study employed machine learning methods to integrate metabolomic and metagenomic data, enabling predictions of selected microbial abundances from metabolite profiling. Model training relied on rich microbial and metabolite abundance data collected in an intensively sampled AS system, including a period of filamentous bulking, as well as a few other AS systems. Multiple linear regression out-competed other three algorithms in achieving relatively high prediction accuracy (R2 = 0.70±0.02) for the abundances of 10 selected, either keystone or core metagenome-assembled genomes (MAGs). The model predicted the abundances of filamentous Microtrichaceae and Thiotrichaceae during bulking with an error range of 14-17.8 %. This predictive power extends beyond the specific system studied, showcasing potentials for broader applications across other AS systems. Aspartate, glycine, and folate were the most influential metabolite features contributing to model performance, which were also effective indicators for filamentous bulking, with up to one week of early warning potential. This study pioneers the application of metabolomics for fast, relatively accurate and cost-effective prediction of AS community composition, enabling proactive management of AS systems towards improved efficiency and stability.


Asunto(s)
Metabolómica , Aguas del Alcantarillado , Aguas del Alcantarillado/microbiología , Microbiota , Eliminación de Residuos Líquidos/métodos , Aprendizaje Automático
3.
Water Res ; 245: 120670, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37778081

RESUMEN

Exploring disinfection byproducts (DBPs) with adverse health effects in drinking water is a constant challenge. Halobenzamides (HBZAMs) are suspected to be a new group of nitrogenous DBPs but have not been reported in drinking water to date. In this study, by coupling SPE and UPLC‒MS/MS, a sensitive method was established to detect eight HBZAMs in drinking water with recoveries and limits of detection of 80-103% and 0.01-0.04 ng/L, respectively. Subsequently, distinct fragments of HBZAMs were extended to the development of a pseudotargeted method for the analysis of the fourteen HBZAMs that were speculated and lack chemical standards. Using the developed method, eight HBZAMs were quantified in ten drinking water samples with concentrations ranging from 2.4 to 7.2 ng/L and a detection frequency of 100%, among which five HBZAMs were stable with half-lives over 72 h under real chlorine levels. Twelve HBZAMs without standards were identified in three to ten drinking water samples with comparable levels. The cytotoxicity of eight quantified HBZAMs in CHO-K1 cells varied with disparity, in which the cytotoxicity of 3,5-DBBZAM was over 10-fold higher than that of aliphatic dichloroacetamide. Considering their diversity, toxicity and stability, the occurrence of HBZAMs in drinking water deserves attention.


Asunto(s)
Desinfectantes , Agua Potable , Contaminantes Químicos del Agua , Purificación del Agua , Cricetinae , Animales , Desinfección/métodos , Agua Potable/análisis , Desinfectantes/toxicidad , Desinfectantes/análisis , Cromatografía Liquida , Nitrógeno/análisis , Purificación del Agua/métodos , Espectrometría de Masas en Tándem , Halogenación , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Cricetulus
4.
J Virol ; 97(5): e0177022, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37129496

RESUMEN

Vimentin (VIM), an indispensable protein, is responsible for the formation of intermediate filament structures within cells and plays a crucial role in viral infections. However, the precise role of VIM in classical swine fever virus (CSFV) infection remains unclear. Herein, we systematically investigated the function of VIM in CSFV replication. We demonstrated that both knockdown and overexpression of VIM affected CSFV replication. Furthermore, we observed by confocal microscopy the rearrangement of cellular VIM into a cage-like structure during CSFV infection. Three-dimensional (3D) imaging indicated that the cage-like structures were localized in the endoplasmic reticulum (ER) and ringed around the double-stranded RNA (dsRNA), thereby suggesting that VIM was associated with the formation of the viral replication complex (VRC). Mechanistically, phosphorylation of VIM at serine 72 (Ser72), regulated by the RhoA/ROCK signaling pathway, induced VIM rearrangement upon CSFV infection. Confocal microscopy and coimmunoprecipitation assays revealed that VIM colocalized and interacted with CSFV NS5A. Structurally, it was determined that amino acids 96 to 407 of VIM and amino acids 251 to 416 of NS5A were the respective important domains for this interaction. Importantly, both VIM knockdown and disruption of VIM rearrangement inhibited the localization of NS5A in the ER, implying that VIM rearrangement recruited NS5A to the ER for VRC formation. Collectively, our results suggest that VIM recruits NS5A to form a stable VRC that is protected by the cage-like structure formed by VIM rearrangement, ultimately leading to enhanced virus replication. These findings highlight the critical role of VIM in the formation and stabilization of VRC, which provides alternative strategies for the development of antiviral drugs. IMPORTANCE Classical swine fever (CSF), caused by classical swine fever virus (CSFV), is a highly infectious disease that poses a significant threat to the global pig industry. Therefore, gaining insights into the virus and its interaction with host cells is crucial for developing effective antiviral measures and controlling the spread of CSF. Previous studies have shown that CSFV infection induces rearrangement of the endoplasmic reticulum, leading to the formation of small vesicular organelles containing nonstructural protein and double-stranded RNA of CSFV, as well as some host factors. These organelles then assemble into viral replication complexes (VRCs). In this study, we have discovered that VIM recruited CSFV NS5A to form a stable VRC that was protected by a cage-like structure formed by rearranged VIM. This enhanced viral replication. Our findings not only shed light on the molecular mechanism of CSFV replication but also offer new insights into the development of antiviral strategies for controlling CSFV.


Asunto(s)
Virus de la Fiebre Porcina Clásica , Peste Porcina Clásica , Porcinos , Animales , Virus de la Fiebre Porcina Clásica/fisiología , Vimentina/metabolismo , ARN Bicatenario , Filamentos Intermedios/metabolismo , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Replicación Viral , Antivirales , Aminoácidos/genética
5.
J Virol ; 97(1): e0192922, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36602362

RESUMEN

Classical swine fever (CSF), caused by classical swine fever virus (CSFV), is an important and highly infectious pig disease worldwide. Kinesin-1, a molecular motor responsible for transporting cargo along the microtubule, has been demonstrated to be involved in the infections of diverse viruses. However, the role of kinesin-1 in the CSFV life cycle remains unknown. Here, we first found that Kif5B played a positive role in CSFV entry by knockdown or overexpression of Kif5B. Subsequently, we showed that Kif5B was associated with the endosomal and lysosomal trafficking of CSFV in the early stage of CSFV infection, which was reflected by the colocalization of Kif5B and Rab7, Rab11, or Lamp1. Interestingly, trichostatin A (TSA) treatment promoted CSFV proliferation, suggesting that microtubule acetylation facilitated CSFV endocytosis. The results of chemical inhibitors and RNA interference showed that Rac1 and Cdc42 induced microtubule acetylation after CSFV infection. Furthermore, confocal microscopy revealed that cooperation between Kif5B and dynein help CSFV particles move in both directions along microtubules. Collectively, our study shed light on the role of kinesin motor Kif5B in CSFV endocytic trafficking, indicating the dynein/kinesin-mediated bidirectional CSFV movement. The elucidation of this study provides the foundation for developing CSFV antiviral drugs. IMPORTANCE The minus end-directed cytoplasmic dynein and the plus end-directed kinesin-1 are the molecular motors that transport cargo on microtubules in intracellular trafficking, which plays a notable role in the life cycles of diverse viruses. Our previous studies have reported that the CSFV entry host cell is dependent on the microtubule-based motor dynein. However, little is known about the involvement of kinesin-1 in CSFV infection. Here, we revealed the critical role of kinesin-1 that regulated the viral endocytosis along acetylated microtubules induced by Cdc42 and Rac1 after CSFV entry. Mechanistically, once CSFV transported by dynein met an obstacle, it recruited kinesin-1 to move in reverse to the anchor position. This study extends the theoretical basis of intracellular transport of CSFV and provides a potential target for the control and treatment of CSFV infection.


Asunto(s)
Virus de la Fiebre Porcina Clásica , Peste Porcina Clásica , Cinesinas , Animales , Virus de la Fiebre Porcina Clásica/fisiología , Dineínas/metabolismo , Endocitosis , Cinesinas/genética , Cinesinas/metabolismo , Microtúbulos/metabolismo , Microtúbulos/virología , Porcinos , Internalización del Virus , Replicación Viral/efectos de los fármacos , Inhibidores de la Síntesis de la Proteína/farmacología , Transporte de Proteínas
6.
J Hazard Mater ; 444(Pt A): 130338, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36417780

RESUMEN

The recalcitrant ß-blockers have been widely detected in aquatic environments up to several hundred µg/L, which are major contributors to ß1 antagonistic activities in wastewater. Their biodegradation mechanisms remain obscure, hindering the development of efficient removal techniques. This study constructed the biodegradation pathways for three typical ß-blockers, namely atenolol, metoprolol, and propranolol, assessed the toxicity of their major biotransformation products, and identified the key enzyme catalyzing the O-dealkylation reaction leading to pollutant mineralization. Atenolol and metoprolol degradation was more efficient than that of propranolol by activated sludge, producing metoprolol acid (MTPA) as a major intermediate. Hydrogenophaga sp. YM1 isolated from activated sludge possess the α-ketoglutarate dependent dioxygenase (TfdA) responsible for O-dealkylation of MTPA and propranolol, producing 4-hydroxyphenylacetic acid (4-HPA) that can be further degraded and ultimately enters the TCA cycle. The role of TfdA was verified by proteomics, enzyme stimulation/inhibition tests, and gene knockout experiments. Molecular docking suggests its different interactions with MTPA and propranolol. Acetate facilitated the degradation of ß-blockers efficiently. The results may shed light on enhanced biological removals of broader ß-blockers and their transformation products in the environment.


Asunto(s)
Propranolol , Aguas Residuales , Metoprolol , Aguas del Alcantarillado , Atenolol , Simulación del Acoplamiento Molecular , Antagonistas Adrenérgicos beta
7.
Water Res ; 218: 118466, 2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35483207

RESUMEN

Halobenzoquinones (HBQs) as disinfection byproducts (DBPs) in drinking water is prioritized for research due to their prevalent occurrence and high toxicity. However, only fifteen HBQs can be identified among a high diversity using targeted LC-MS/MS analysis in previous studies due to the lack of chemical standards. In this study, we developed a pseudo-targeted LC-MS/MS method for detecting and quantifying diverse HBQs. Distinct fragment characteristics of HBQs was observed according to the halogen substituent effects, and extended to the development of a multiple-reaction-monitoring (MRM) method for the quantification of the 46 HBQs that were observed in simulated drinking water using non-targeted analysis. The fragmentation mechanism was supported by the changes of Gibbs free energy (ΔG), and a linear relationship between the ΔG and the ionization efficiency of analytes was developed accordingly for quantification of these 46 HBQs, 30 of which were lack of chemical standards. It is noted that 29 of the 30 newly-identified HBQs were halo-methyl-benzoquinones (HMBQs), which were predicted to be carcinogens related with drinking-water bladder cancer risk and be more toxic than non-methyl HBQs. Using the new method, twelve HMBQs were detected in actual drinking water samples with concentrations up to 100.4 ng/L, 3 times higher than that reported previously. The cytotoxicity in CHO cells of HMBQs was over 1-fold higher than that of non-methyl-HBQs. Therefore, HMBQs are an essential, highly toxic group of HBQs in drinking water, which deserve particular monitoring and control.


Asunto(s)
Desinfectantes , Agua Potable , Contaminantes Químicos del Agua , Purificación del Agua , Animales , Benzoquinonas , Cromatografía Liquida , Cricetinae , Cricetulus , Desinfectantes/análisis , Desinfección/métodos , Agua Potable/análisis , Halogenación , Espectrometría de Masas en Tándem , Contaminantes Químicos del Agua/análisis
8.
Water Res ; 209: 117901, 2021 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-34872027

RESUMEN

Halobenzoquinones (HBQs) are emerging disinfection byproducts generated during the reaction of chlorine disinfectant with natural organic matter (NOM) in source water. In this study, the correlations between molecular weight and HBQs generation of river NOM was evaluated. The compositional and functional characteristics of primary HBQs precursors were revealed by using Orbitrap mass spectrometry combined with molecular tagging. The NOM fraction larger than 50 kDa resulted in approximately 9 times more HBQs (50.9 ± 2.7 ng/mgC) than low molecular weight fractions. Significant correlations were found between the yields of HBQs and lignin-like and highly oxygen compounds in NOM, suggesting their critical roles in HBQs formation. Derivatizating the aldehydes, ketones, hydroxyl and carboxyl groups in NOM could reduce HBQs yields by 90.7%-100%. Unraveling the molecular characteristics of HBQs precursors in NOM would greatly benefit the prediction of HBQs yields of different source water, and develop more efficient disinfection byproduct control strategies.

9.
J Hazard Mater ; 418: 126249, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34119971

RESUMEN

Intensified use of disinfectants to control COVID-19 could unintentionally increase the disinfection byproducts (DBPs) in the environment. In indoor spaces, it is critical to determine the optimal disinfection practice to prevent the spread of the virus while keeping DBPs at relatively low levels in the air. The formation of DBPs exceed 0.1 µg/mg while hypochlorite dosed at >10 mg/m3. The total DBP concentrations in highly disinfected places (100-200 mg/m3 hypochlorite) were as high as 66.8 µg/m3, and the Hazard Index (HI) was up to 0.84, and both values were much higher than those in less disinfected places (<10 mg/m3 hypochlorite). Taking into account the HI, formation yields and the origin of the DBPs, we recommended 10 mg/m3 as the suggested hypochlorite dose to minimize DBPs generation during routine disinfection for controlling the coronavirus. DBPs in indoor air could be eliminated by ventilation, reducing the usage of personal care products, and wiping the solid surface with water before or after disinfection. These results highlighted the necessity to control air-borne DBPs and their associated health risks arising from intensified disinfection, and will guide the further development of evidence-based regulation on DBP exposure during disinfection and improve public health protection.


Asunto(s)
COVID-19 , Desinfectantes , Contaminantes Químicos del Agua , Purificación del Agua , Desinfección , Halogenación , Humanos , Pandemias , SARS-CoV-2 , Contaminantes Químicos del Agua/análisis
10.
J Virol ; 95(10)2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33627389

RESUMEN

Cytoskeleton, as a ubiquitous structure in the cells, plays an important role in the process of virus entry, replication, and survival. However, the action mechanism of cytoskeleton in the invasion of Pestivirus into host cells remains unclear. In this study, we systematically dissected the key roles of the main cytoskeleton components, microfilaments and microtubules in the endocytosis of porcine Pestivirus, Classical swine fever virus (CSFV). We observed the dynamic changes of actin filaments in CSFV entry. Confocal microscopy showed that CSFV invasion induced the dissolution and aggregation of stress fibers, resulting in the formation of lamellipodia and filopodia. Chemical inhibitors and RNA interference were used to find that the dynamic changes of actin were caused by EGFR-PI3K/MAPK-RhoA/Rac1/Cdc42-cofilin signaling pathway, which regulates the microfilaments to help CSFV entry. Furthermore, co-localization of the microfilaments with clathrin and Rab5 (early endosome), as well as microtubules with Rab7 (late endosome) and Lamp1 (lysosome) revealed that microfilaments were activated and rearranged to help CSFV trafficking to early endosome after endocytosis. Subsequently, recruitment of microtubules by CSFV also assisted membrane fusion of the virions from late endosome to lysosome with the help of a molecular motor, dynein. Unexpectedly, vimentin, which is an intermediate filament, had no effect on CSFV entry. Taken together, our findings comprehensively revealed the molecular mechanisms of cytoskeletal components that regulated CSFV endocytosis and facilitated further understanding of Pestivirus entry, which would be conducive to explore antiviral molecules to control classical swine fever.IMPORTANCEEndocytosis, an essential biological process mediating cellular internalization events, is often exploited by pathogens for their entry into target cells. Previously, we have reported different mechanisms of CSFV endocytosis into the porcine epithelial cells (PK-15) and macrophages (3D4/21); however, the details of microfilaments/microtubules mediated virus migration within the host cells remained to be elucidated. In this study, we found that CSFV infection induced rearrangement of actin filaments regulated by cofilin through EGFR-PI3K/MAPK-RhoA/Rac1/Cdc42 pathway. Furthermore, we found that CSFV particles were trafficked along actin filaments in early and late endosomes, and through microtubules in lysosomes after entry. Here, we provide for the first time a comprehensive description of the cytoskeleton that facilitates entry and intracellular transport of highly pathogenic swine virus. Results from this study will greatly contribute to the understanding of virus-induced early and complex changes in host cells that are important in CSFV pathogenesis.

11.
Environ Sci Technol ; 53(20): 11860-11868, 2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31509700

RESUMEN

Halobenzoquinones (HBQs) are frequently detected disinfection byproducts (DBPs) in drinking water with high toxicity and relevance to public health. In this study, we characterized the occurrence, formation, and oxidative stress of the HBQs in tea. 2,6-DCBQ and TetraC-1,2-BQ were identified in all prepared teas at total concentrations of 1.3-2.0 ng/L. 2,6-DCBQ originated from drinking water DBPs, while TetraC-1,2-BQ originated from tea leaves or were generated during tea polyphenol chlorination. HBQs in tea induced the formation of reactive oxygen species and semiquinone radicals, and the oxidative stress could be depleted by tea polyphenols, e.g., (-)-epigallocatechin gallate (EGCG). High-resolution mass spectrometry analysis indicated that the HBQs combined with EGCG and formed adducts at a ratio of 1:1 or 2:1 with the binding sites on the A ring and B ring of EGCG. The viability of HepG2 cells exposed to 50 µM 2,6-DCBQ was increased from 20.0% to 65.2% when 50 µM of EGCG was added. These results demonstrated that various HBQs can occur in tea due to the HBQ DBPs in drinking water, the leachate from tea leaves, and the chlorination of tea polyphenols; furthermore, the oxidative stress and cellular toxicity induced by HBQs in tea could be decreased by tea polyphenols. This is the first study to report HBQs in tea, elucidate the sources of HBQs, and assess relevant health risks.


Asunto(s)
Desinfección , Agua Potable , Halogenación , Estrés Oxidativo ,
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA