Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 130(26): 266801, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37450818

RESUMEN

[BaTiO_{3}]_{m}/[BaZrO_{3}]_{n} (m, n=4-12) superlattices are used to demonstrate the fabrication and deterministic control of an artificial relaxor. X-ray diffraction and atomic-resolution imaging studies confirm the production of high-quality heterostructures. With decreasing BaTiO_{3} layer thickness, dielectric measurements reveal systematically lower dielectric-maximum temperatures, while hysteresis loops and third-harmonic nonlinearity studies suggest a transition from ferroelectriclike to relaxorlike behavior driven by tuning the random-field strength. This system provides a novel platform for studying the size effect and interaction length scale of the nanoscale-polar structures in relaxors.


Asunto(s)
Compuestos de Bario , Temperatura
2.
J Chem Phys ; 157(5): 054501, 2022 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-35933214

RESUMEN

Dynamic fluctuations in the hydrogen-bond network of water occur from femto- to nanosecond timescales and provide insight into the structural/dynamical aspects of water at ion-water interfaces. Employing terahertz spectroscopy assisted with molecular dynamics simulations, we study aqueous chloride solutions of five monovalent cations, namely, Li, Na, K, Rb, and Cs. We show that ions modify the behavior of the surrounding water molecules and form interfacial layers of water around them with physical properties distinct from those of bulk water. Small cations with high charge densities influence the kinetics of water well beyond the first solvation shell. At terahertz frequencies, we observe an emergence of fast relaxation processes of water with their magnitude following the ionic order Cs > Rb > K > Na > Li, revealing an enhanced population density of weakly coordinated water at the ion-water interface. The results shed light on the structure breaking tendency of monovalent cations and provide insight into the properties of ionic solutions at the molecular level.


Asunto(s)
Espectroscopía de Terahertz , Agua , Cationes Monovalentes , Enlace de Hidrógeno , Litio/química , Sodio/química , Agua/química
3.
Adv Mater ; 34(30): e2108841, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35353395

RESUMEN

Over the last 30 years, the study of ferroelectric oxides has been revolutionized by the implementation of epitaxial-thin-film-based studies, which have driven many advances in the understanding of ferroelectric physics and the realization of novel polar structures and functionalities. New questions have motivated the development of advanced synthesis, characterization, and simulations of epitaxial thin films and, in turn, have provided new insights and applications across the micro-, meso-, and macroscopic length scales. This review traces the evolution of ferroelectric thin-film research through the early days developing understanding of the roles of size and strain on ferroelectrics to the present day, where such understanding is used to create complex hierarchical domain structures, novel polar topologies, and controlled chemical and defect profiles. The extension of epitaxial techniques, coupled with advances in high-throughput simulations, now stands to accelerate the discovery and study of new ferroelectric materials. Coming hand-in-hand with these new materials is new understanding and control of ferroelectric functionalities. Today, researchers are actively working to apply these lessons in a number of applications, including novel memory and logic architectures, as well as a host of energy conversion devices.

4.
J Phys Chem B ; 123(41): 8791-8799, 2019 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-31539246

RESUMEN

We report relaxation dynamics of glycerol-water mixtures as probed by megahertz-to-terahertz dielectric spectroscopy in a frequency range from 50 MHz to 0.5 THz at room temperature. The dielectric relaxation spectra reveal several polarization processes at the molecular level with different time constants and dielectric strengths, providing an understanding of the hydrogen-bonding network in glycerol-water mixtures. We have determined the structure of hydration shells around glycerol molecules and the dynamics of bound water as a function of glycerol concentration in solutions using the Debye relaxation model. The experimental results show the existence of a critical glycerol concentration of ∼7.5 mol %, which is related to the number of water molecules in the hydration layer around a glycerol molecule. At higher glycerol concentrations, water molecules dispersed in a glycerol network become abundant and eventually dominate, and four distinct relaxation processes emerge in the mixtures. The relaxation dynamics and hydration structure in glycerol-water mixtures are further probed with molecular dynamics simulations, which confirm the physical picture revealed by the dielectric spectroscopy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA