Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 7(13): 7197-205, 2015 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-25793738

RESUMEN

Novel strategies based on spray-pyrolysis deposition are proposed to increase the triple-phase boundary (TPB) of La0.8Sr0.2MnO3-δ (LSM) cathodes in contact with yttria-stabilized zirconia (YSZ) electrolyte: (i) nanocrystalline LSM films deposited on as-prepared YSZ surface; (ii) the addition of poly(methyl methacrylate) microspheres as pore formers to further increase the porosity of the film cathodes; and (iii) the deposition of LSM by spray pyrolysis on backbones of Zr0.84Y0.16O1.92 (YSZ), Ce0.9Gd0.1O1.95 (CGO), and Bi1.5Y0.5O3-δ (BYO) previously fixed onto the YSZ. This last method is an alternative to the classical infiltration process with several advantages for large-scale manufacturing of planar solid oxide fuel cells (SOFCs), including easier industrial implementation, shorter preparation time, and low cost. The morphology and electrochemical performance of the electrodes are investigated by scanning electron microscopy and impedance spectroscopy. Very low values of area specific resistance are obtained, ranging from 1.4 Ω·cm(2) for LSM films deposited on as-prepared YSZ surface to 0.06 Ω-cm(2) for LSM deposited onto BYO backbone at a measured temperature of 650 °C. These electrodes exhibit high performance even after annealing at 950 °C, making them potentially suitable for applications in SOFCs at intermediate temperatures.

2.
Dalton Trans ; 43(17): 6490-9, 2014 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-24622854

RESUMEN

Lanthanum tungstates, "La6WO12", are mixed ion proton-electronic conductors with very interesting properties for technological applications and better phase stability compared to alkaline earth perovskites. A new series of compounds La(27.04-x)M(x)W(4.96)O(55.44-x/2□8.56+x/2) (M = Ca(2+), Sr(2+) and Ba(2+)) are investigated with the aim of increasing the concentration of oxygen vacancies and studying their effects on the structure and transport properties. The materials have been studied by high-resolution laboratory X-ray powder diffraction and scanning electron microscopy combined with energy dispersive spectroscopy (EDS). High temperature X-ray powder diffraction and thermal analysis in wet and dry N2 gas did not show any evidence of phase transition up to 800 °C. The total conductivity was studied by impedance spectroscopy under dry and wet atmospheres and as a function of the oxygen partial pressure. The electronic contribution to the conductivity was determined by the Hebb-Wagner polarization method. The generation of extrinsic vacancies in the lattice with alkaline earth doping leads to a decrease of the ionic conductivity for high doping level, suggesting a proton trapping mechanism.

3.
Dalton Trans ; (20): 2058-64, 2007 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-17502939

RESUMEN

Oxygen-stoichiometric La(9.33) square(0.67)(Si(6)O(24))O2 and oxygen-excess La(8.65)Sr(1.35)(Ge(6)O(24))O(2.32) and La(8.65)Sr(1.35)(Si(6)O(24))O(2.32) oxy-apatites have been structurally characterized at low temperatures by the Rietveld method. Oxygen-interstitial distribution has been studied at 15 K for La(9.33) square(0.67)(Si(6)O(24))O2 and La(8.65)Sr(1.35)(Ge(6)O(24))O(2.32) by time-of-flight neutron powder diffraction and at 4 K for La(8.65)Sr(1.35)(Si(6)O(24))O(2.32) by constant-wavelength neutron powder diffraction. The low temperature structural study was undertaken in order to distinguish between the effects of static disorder, originated mainly from the presence of interstitial oxygens, and the anisotropic thermal vibrations. At such low temperatures, the influence of the anisotropic thermal vibrations is minimised. This structural study has firmly established the existence of interstitial oxygens in these materials, which may be useful as electrolytes for solid oxide fuel cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA