Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Rob Res ; 39(5): 586-597, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32661450

RESUMEN

A robotic system for automatically navigating ultrasound (US) imaging catheters can provide real-time intra-cardiac imaging for diagnosis and treatment while reducing the need for clinicians to perform manual catheter steering. Clinical deployment of such a system requires accurate navigation despite the presence of disturbances including cyclical physiological motions (e.g., respiration). In this work, we report results from in vivo trials of automatic target tracking using our system, which is the first to navigate cardiac catheters with respiratory motion compensation. The effects of respiratory disturbances on the US catheter are modeled and then applied to four-degree-of-freedom steering kinematics with predictive filtering. This enables the system to accurately steer the US catheter and aim the US imager at a target despite respiratory motion disturbance. In vivo animal respiratory motion compensation results demonstrate automatic US catheter steering to image a target ablation catheter with 1.05 mm and 1.33° mean absolute error. Robotic US catheter steering with motion compensation can improve cardiac catheterization techniques while reducing clinician effort and X-ray exposure.

2.
J Mech Des N Y ; 140(7): 0750031-7500312, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30083041

RESUMEN

A bracing device for stabilizing cardiac catheters inside the heart was developed to provide surgical-level dexterity to minimally invasive catheter-based procedures for cardiac valve disease. The brace was designed to have a folding structure, which lies flat along a catheter during navigation through vasculature and then unfolds into a rigid bracing configuration after deployment across the interatrial septum. The brace was designed to be easily deployable, provide bracing support for a transseptal catheter, and also be compliant enough to be delivered to the heart via tortuous vasculature. This aims to improve dexterity in catheter-based mitral valve repair and enable other complex surgical procedures to be done with minimally invasive instruments.

3.
IEEE Int Conf Robot Autom ; 2017: 4830-4836, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28890841

RESUMEN

Robotic cardiac catheterization using ultrasound (US) imaging catheters provides real time imaging from within the heart while reducing the difficulty in manually steering a four degree-of-freedom (4-DOF) catheter. Accurate robotic catheter navigation in the heart is challenging due to a variety of disturbances including cyclical physiological motions, such as respiration. In this work we compensate for respiratory motion by using an Extended Kalman Filter (EKF) to predict target motion and by applying the predictions to steer the US imaging catheter. The system performance was measured in bench top experiments with phantom vasculature. The robotic system with predictive filtering tracked cyclically moving targets with 1.59 mm and 0.72° mean error. Accurately tracking moving structures can improve intra-procedural treatments and visualization.

4.
IEEE Trans Robot ; 33(1): 81-91, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28190986

RESUMEN

A system for automatically pointing ultrasound (US) imaging catheters will enable clinicians to monitor anatomical structures and track instruments during interventional procedures. Off-the-shelf US catheters provide high quality US images from within the patient. While this method of imaging has been proven to be effective for guiding many interventional treatments, significant training is required to overcome the difficulty in manually steering the imager to point at desired structures. Our system uses closed-form four degree of freedom (DOF) kinematic solutions to automatically position the US catheter and point the imager. Algorithms for steering and imager pointing were developed for a range of useful diagnostic and interventional motions. The system was validated on a robotic test bed by steering the catheter within a water environment containing phantom objects. While the system described here was designed for pointing ultrasound catheters, these algorithms are applicable to accurate 4-DOF steering and orientation control of any long thin tendon-driven tool with single or bi-directional bending.

5.
IEEE Int Conf Robot Autom ; 2016: 4436-4442, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27525170

RESUMEN

Cardiac catheterization with ultrasound (US) imaging catheters provides real time US imaging from within the heart, but manually navigating a four degree of freedom (DOF) imaging catheter is difficult and requires extensive training. Existing work has demonstrated robotic catheter steering in constrained bench top environments. Closed-loop control in an unconstrained setting, such as patient vasculature, remains a significant challenge due to friction, backlash, and physiological disturbances. In this paper we present a new method for closed-loop control of the catheter tip that can accurately and robustly steer 4-DOF cardiac catheters and other flexible manipulators despite these effects. The performance of the system is demonstrated in a vasculature phantom and an in vivo porcine animal model. During bench top studies the robotic system converged to the desired US imager pose with sub-millimeter and sub-degree-level accuracy. During animal trials the system achieved 2.0 mm and 0.65° accuracy. Accurate and robust robotic navigation of flexible manipulators will enable enhanced visualization and treatment during procedures.

6.
J Mech Robot ; 8(5): 0510161-510169, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27303592

RESUMEN

In this paper, we present the design, fabrication, and testing of a robot for automatically positioning ultrasound (US) imaging catheters. Our system will point US catheters to provide real-time imaging of anatomical structures and working instruments during minimally invasive procedures. Manually navigating US catheters is difficult and requires extensive training in order to aim the US imager at desired targets. Therefore, a four-degree-of-freedom (4DOF) robotic system was developed to automatically navigate US imaging catheters for enhanced imaging. A rotational transmission enables 3DOF for pitch, yaw, and roll of the imager. This transmission is translated by the 4DOF. An accuracy analysis calculated the maximum allowable joint motion error. Rotational joints must be accurate to within 1.5 deg, and the translational joint must be accurate within 1.4 mm. Motion tests then validated the accuracy of the robot. The average resulting errors in positioning of the rotational joints were 0.04-0.22 deg. The average measured backlash was 0.18-0.86 deg. Measurements of average translational positioning and backlash errors were negligible. The resulting joint motion errors were well within the required specifications for accurate robot motion. The output of the catheter was then tested to verify the effectiveness of the handle motions to transmit torques and translations to the catheter tip. The catheter tip was navigated to desired target poses with average error 1.3 mm and 0.71 deg. Such effective manipulation of US imaging catheters will enable better visualization in various procedures ranging from cardiac arrhythmia treatment to tumor removal in urological cases.

7.
Rep U S ; 2015: 216-221, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26709364

RESUMEN

A system for actively changing the stiffness of a long, thin, flexible robotic manipulator has been designed for cardiologists to use in a range of diagnosis and treatment procedures. Low-stiffness manipulators, such as catheters, are ideal for steering through vasculature with low risk of tissue injury. However, such instruments are not well-suited for applying force to tissue. The proposed system solves this problem by using a series of bead-shaped vertebrae containing pull wires to actively change the stiffness of the catheter, similar to gooseneck surgical retractors. Individual wires steer the catheter to a desired location. All wires are then tensioned to create friction between each vertebra and prevent sliding, therefore resisting motion. While this design concept has been implemented manually in various settings for decades, fine robotic control of the friction and stiffness of the system relies on a thorough understanding of the friction properties between vertebral segments. We have developed an analytical model to understand the interactions between vertebrae and determine the relationships between system parameters and the overall stiffness of the catheter. Experiments validated the calculations from the model and the functionality of the system by applying known loads to the tip of the catheter and measuring the catheter displacement. The catheter stiffness was measured to range from 100 N/m to 800 N/m, which is sufficient for performing many surgical tasks on tissue. This system can be useful in minimally invasive procedures involving direct instrument contact with tissue by improving accuracy, safety, and work flow.

8.
Artículo en Inglés | MEDLINE | ID: mdl-26925468

RESUMEN

In this paper we present the design, fabrication, and testing of a robot for automatically positioning ultrasound imaging catheters. Our system will point ultrasound (US) catheters to provide real-time imaging of anatomical structures and working instruments during minimally invasive surgeries. Manually navigating US catheters is difficult and requires extensive training in order to aim the US imager at desired targets. Therefore, a four DOF robotic system was developed to automatically navigate US imaging catheters for enhanced imaging. A rotational transmission enables three DOF for pitch, yaw, and roll of the imager. This transmission is translated by the fourth DOF. An accuracy analysis was conducted to calculate the maximum allowable joint motion error. Rotational joints must be accurate to within 1.5° and the translational joint must be accurate within 1.4 mm. Motion tests were then conducted to validate the accuracy of the robot. The average resulting errors in positioning of the rotational joints were measured to be 0.28°-0.38° with average measured backlash error 0.44°. Average translational positioning and backlash errors were measured to be significantly lower than the reported accuracy of the position sensor. The resulting joint motion errors were well within the required specifications for accurate robot motion. Such effective navigation of US imaging catheters will enable better visualization in various procedures ranging from cardiac arrhythmia treatment to tumor removal in urological cases.

9.
Artículo en Inglés | MEDLINE | ID: mdl-27754495

RESUMEN

We present an instrument tracking and visualization system for intra-cardiac ultrasound catheter guided procedures, enabled through the robotic control of ultrasound catheters. Our system allows for rapid acquisition of 2D ultrasound images and accurate reconstruction and visualization of a 3D volume. The reconstructed volume addresses the limited field of view, an inherent problem of ultrasound imaging, and serves as a navigation map for procedure guidance. Our robotic system can track a moving instrument by continuously adjusting the imaging plane and visualizing the instrument tip. The overall instrument tracking accuracy is 2.2mm RMS in position and 0.8° in angle.

10.
IEEE Int Conf Robot Autom ; 2013: 5794-5799, 2013 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-24683501

RESUMEN

Intracardiac echocardiography (ICE) catheters enable high-quality ultrasound imaging within the heart, but their use in guiding procedures is limited due to the difficulty of manually pointing them at structures of interest. This paper presents the design and testing of a catheter steering model for robotic control of commercial ICE catheters. The four actuated degrees of freedom (4-DOF) are two catheter handle knobs to produce bi-directional bending in combination with rotation and translation of the handle. An extra degree of freedom in the system allows the imaging plane (dependent on orientation) to be directed at an object of interest. A closed form solution for forward and inverse kinematics enables control of the catheter tip position and the imaging plane orientation. The proposed algorithms were validated with a robotic test bed using electromagnetic sensor tracking of the catheter tip. The ability to automatically acquire imaging targets in the heart may improve the efficiency and effectiveness of intracardiac catheter interventions by allowing visualization of soft tissue structures that are not visible using standard fluoroscopic guidance. Although the system has been developed and tested for manipulating ICE catheters, the methods described here are applicable to any long thin tendon-driven tool (with single or bi-directional bending) requiring accurate tip position and orientation control.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA