Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 117(11): 6023-6034, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32132200

RESUMEN

Despite a growing number of ion channel genes implicated in hereditary ataxia, it remains unclear how ion channel mutations lead to loss-of-function or death of cerebellar neurons. Mutations in the gene KCNMA1, encoding the α-subunit of the BK channel have emerged as responsible for a variety of neurological phenotypes. We describe a mutation (BKG354S) in KCNMA1, in a child with congenital and progressive cerebellar ataxia with cognitive impairment. The mutation in the BK channel selectivity filter dramatically reduced single-channel conductance and ion selectivity. The BKG354S channel trafficked normally to plasma, nuclear, and mitochondrial membranes, but caused reduced neurite outgrowth, cell viability, and mitochondrial content. Small interfering RNA (siRNA) knockdown of endogenous BK channels had similar effects. The BK activator, NS1619, rescued BKG354S cells but not siRNA-treated cells, by selectively blocking the mutant channels. When expressed in cerebellum via adenoassociated virus (AAV) viral transfection in mice, the mutant BKG354S channel, but not the BKWT channel, caused progressive impairment of several gait parameters consistent with cerebellar dysfunction from 40- to 80-d-old mice. Finally, treatment of the patient with chlorzoxazone, a BK/SK channel activator, partially improved motor function, but ataxia continued to progress. These studies indicate that a loss-of-function BK channel mutation causes ataxia and acts by reducing mitochondrial and subsequently cellular viability.


Asunto(s)
Cerebelo/patología , Clorzoxazona/administración & dosificación , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/genética , Mitocondrias/patología , Degeneraciones Espinocerebelosas/genética , Adolescente , Animales , Animales Recién Nacidos , Línea Celular , Cerebelo/citología , Análisis Mutacional de ADN , Dependovirus/genética , Modelos Animales de Enfermedad , Femenino , Técnicas de Silenciamiento del Gen , Vectores Genéticos/genética , Humanos , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/antagonistas & inhibidores , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/metabolismo , Mutación con Pérdida de Función , Ratones , Oocitos , Ratas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Degeneraciones Espinocerebelosas/diagnóstico , Degeneraciones Espinocerebelosas/tratamiento farmacológico , Degeneraciones Espinocerebelosas/patología , Transfección , Secuenciación del Exoma , Xenopus
2.
Pharmacol Res ; 101: 56-64, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26305431

RESUMEN

Voltage-gated ion channels are the molecular determinants of cellular excitability. This group of ion channels is one of the most important pharmacological targets in excitable tissues such as nervous system, cardiac and skeletal muscle. Moreover, voltage-gated ion channels are expressed in non-excitable cells, where they mediate key cellular functions through intracellular biochemical mechanisms rather than rapid electrical signaling. This review aims at illustrating the pharmacological impact of these ion channels, highlighting in particular the structural details and physiological functions of two of them - the high conductance voltage- and Ca(2+)-gated K(+) (BK) channels and voltage-gated proton (Hv1) channels- in non-excitable cells. BK channels have been implicated in a variety of physiological processes ranging from regulation of smooth muscle tone to modulation of hormone and neurotransmitter release. Interestingly, BK channels are also involved in modulating K(+) transport in the mammalian kidney and colon epithelium with a potential role in the hyperkalemic phenotype observed in patients with familial hyperkalemic hypertension type 2, and in the pathophysiology of hypertension. In addition, BK channels are responsible for resting and stimulated Ca(2+)-activated K(+) secretion in the distal colon. Hv1 channels have been detected in many cell types, including macrophages, blood cells, lung epithelia, skeletal muscle and microglia. These channels have a central role in the phagocytic system. In macrophages, Hv1 channels participate in the generation of reactive oxygen species in the respiratory burst during the process of phagocytosis.


Asunto(s)
Canales Iónicos/fisiología , Canales de Potasio de Gran Conductancia Activados por el Calcio/fisiología , Quimioterapia , Humanos , Canales Iónicos/química , Canales Iónicos/efectos de los fármacos , Canales de Potasio de Gran Conductancia Activados por el Calcio/química , Canales de Potasio de Gran Conductancia Activados por el Calcio/efectos de los fármacos , Modelos Biológicos , Modelos Moleculares , Terapia Molecular Dirigida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA