RESUMEN
INTRODUCTION: A polymorphism in the type 2 deiodinase (Thr92Ala-DIO2) gene has been associated with behavioral and cognitive dysfunction as well as neurodegeneration and oxidative stress in the central nervous system. OBJECTIVE: To test whether the minor allele (Ala92) frequency (MAF) is increased in children in the autism spectrum disorder (ASD), and whether carriers of the minor allele exhibit more severe symptoms and/or worse adaptive behavior. STUDY DESIGN: ASD children were evaluated at baseline and yearly throughout the study by psychologists using the following tools: autism behavior checklist, Vineland Adaptative Behaviour Scales II, non-verbal intelligence test SON-R 21/2-7, SON-R 6-40, Weschler scale for intelligence, and autism treatment evaluation checklist. SETTINGS: Academic outpatient mental health facility in Sao Paulo, Brazil. PARTICIPANTS: ASD boys and girls younger than 18 years of age. 132 consecutive ASD children, mostly boys (~ 80%); ~ 50% was classified as verbal. Exclusion criteria were coexistence of sensory and/or physical impairment, or any associated genetic syndromes. RESULTS: Median follow-up was for an uninterrupted period of 937 days (139-1375 days), which did not vary significantly among the genotypes. The MAF was 47% in ASD patients vs. 51% in a local reference population with similar ethnic background; the clinical severity and progression were not affected by the minor allele. Carriers of the minor allele exhibited higher adaptive behavior in the domains "daily living skills" and "communication", which correlated positively with the dose of the minor allele. CONCLUSION: The MAF is not different in ASD children, but carriers of the Thr92Ala-DIO2 polymorphism exhibited higher adaptive behavior.
Asunto(s)
Adaptación Psicológica/fisiología , Trastorno del Espectro Autista , Yoduro Peroxidasa/genética , Adolescente , Trastorno del Espectro Autista/diagnóstico , Trastorno del Espectro Autista/epidemiología , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/psicología , Síntomas Conductuales/diagnóstico , Síntomas Conductuales/etiología , Brasil/epidemiología , Sistema Nervioso Central/metabolismo , Niño , Cognición/fisiología , Femenino , Frecuencia de los Genes , Hormona Liberadora de Gonadotropina , Humanos , Pruebas de Inteligencia , Masculino , Estrés Oxidativo , Polimorfismo Genético , Yodotironina Deyodinasa Tipo IIRESUMEN
Attention and emotion have a positive impact on memory formation, which is related to the activation of the noradrenergic system in the brain. The hippocampus and amygdala are fundamental structures in memory acquisition, which is modulated by noradrenaline through the noradrenergic receptors. Pharmacological studies suggest that memory acquisition depends on the action of both the ß3 (ß3-AR) and ß2 (ß2-AR) receptor subtypes. However, the use of animal models with specific knockout for the ß3-AR receptor only (ß3-ARKO) allows researchers to more accurately assess its role in memory formation processes. In the present study, we evaluated short- and long-term memory acquisition capacity in ß3-ARKO mice and wild-type mice at approximately 60 days of age. The animals were submitted to the open field test, the elevated plus maze, object recognition, and social preference. The results showed that the absence of the ß3-AR receptor caused no impairment in locomotion and did not cause anxious behavior, but it caused significant impairment of short- and long-term memory compared to wild-type animals. We also evaluated the expression of genes involved in memory consolidation. The mRNA levels for GLUT3, a glucose transporter expressed in the central nervous system, were significantly reduced in the amygdala, but not in the hippocampus of the ß3-ARKO animals. Our results showed that ß3-AR was involved in the process of acquisition of declarative memory, and its action may be due to the facilitation of glucose absorption in the amygdala.
Asunto(s)
Reacción de Prevención/fisiología , Aprendizaje por Laberinto/fisiología , Consolidación de la Memoria/fisiología , Receptores Adrenérgicos beta 3/fisiología , Transducción de Señal/fisiología , Animales , Regulación de la Expresión Génica , Masculino , Ratones , ARN Mensajero/metabolismo , Receptores Adrenérgicos beta 3/metabolismoRESUMEN
This study aimed to mask fluconazole (FLU) taste and improve its rheological properties by an efficient process of cyclodextrin complexation. For this, hot-melt extrusion (HME) was used to obtain extrudates composed of FLU, hydroxypropylcellulose, and one of two different cyclodextrins (ß-cyclodextrin or hydroxypropyl-ß-cyclodextrin) maintaining the drug:cyclodextrin molar ratio at 1:0.3 or 1:0.2, respectively. Samples were characterized by physicochemical tests, palatability using e-tongue and antifungal assays. Drug stability was preserved after HME, according to spectroscopy test (correlation coefficient >0.9) and HPLC-assay (100-107%). Flowability was improved in HME systems with compressibility of <12%. Similarly, floodability exhibited significant enhancement (dispersibility <10%). Whereas extrudates of FLU containing only the polymeric matrix led to a slow drug dissolution efficiency (18.6%) and a partial drug taste masking; extrudates containing cyclodextrin accelerated FLU dissolution (dissolution efficiency approx. 30%) and provided a complete drug taste masking. Moreover, HME process could produce drug complexes with high complexation efficiency and preserve its antifungal activity.
Asunto(s)
Antifúngicos/química , Fluconazol/química , Gusto , beta-Ciclodextrinas/química , Antifúngicos/farmacología , Candida/efectos de los fármacos , Nariz Electrónica , Fluconazol/farmacología , Reología , Solubilidad , beta-Ciclodextrinas/farmacologíaRESUMEN
This work aimed at obtaining an optimized itraconazole (ITZ) solid oral formulation in terms of palatability and dissolution rate by combining different polymers using hot melt extrusion (HME), according to a simplex centroid mixture design. For this, the polymers Plasdone® (poly(1-vinylpyrrolidone-co-vinyl acetate) [PVP/VA]), Klucel® ELF (2-hydroxypropyl ether cellulose [HPC]), and Soluplus® (SOL, polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol) were processed using a laboratory HME equipment operating without recirculation at constant temperature. Samples were characterized by physicochemical assays, as well as dissolution rate and palatability using an e-tongue. All materials became homogeneous and dense after HME processing. Thermal and structural analyses demonstrated drug amorphization, whereas IR spectroscopy evidenced drug stability and drug-excipient interactions in HME systems. Extrudates presented a significant increase in dissolution rate compared to ITZ raw material, mainly with formulations containing PVP/VA and HPC. A pronounced improvement in taste masking was also identified for HME systems, especially in those containing higher amounts of SOL and HPC. Data showed polymers act synergistically favoring formulation functional properties. Predicted best formulation should contain ITZ 25.0%, SOL 33.2%, HPC 28.9%, and PVP/VA 12.9% (w/w). Optimized response considering dissolution rate and palatability reinforces the benefit of polymer combinations.
Asunto(s)
Itraconazol/química , Celulosa/análogos & derivados , Celulosa/química , Química Farmacéutica/métodos , Composición de Medicamentos/métodos , Excipientes/química , Calor , Polietilenglicoles/química , Polímeros/química , Polivinilos/química , Pirrolidinas/química , Solubilidad , Compuestos de Vinilo/químicaRESUMEN
Attention and emotion have a positive impact on memory formation, which is related to the activation of the noradrenergic system in the brain. The hippocampus and amygdala are fundamental structures in memory acquisition, which is modulated by noradrenaline through the noradrenergic receptors. Pharmacological studies suggest that memory acquisition depends on the action of both the β3 (β3-AR) and β2 (β2-AR) receptor subtypes. However, the use of animal models with specific knockout for the β3-AR receptor only (β3-ARKO) allows researchers to more accurately assess its role in memory formation processes. In the present study, we evaluated short- and long-term memory acquisition capacity in β3-ARKO mice and wild-type mice at approximately 60 days of age. The animals were submitted to the open field test, the elevated plus maze, object recognition, and social preference. The results showed that the absence of the β3-AR receptor caused no impairment in locomotion and did not cause anxious behavior, but it caused significant impairment of short- and long-term memory compared to wild-type animals. We also evaluated the expression of genes involved in memory consolidation. The mRNA levels for GLUT3, a glucose transporter expressed in the central nervous system, were significantly reduced in the amygdala, but not in the hippocampus of the β3-ARKO animals. Our results showed that β3-AR was involved in the process of acquisition of declarative memory, and its action may be due to the facilitation of glucose absorption in the amygdala.
Asunto(s)
Animales , Masculino , Conejos , Reacción de Prevención/fisiología , Transducción de Señal/fisiología , Aprendizaje por Laberinto/fisiología , Receptores Adrenérgicos beta 3/fisiología , Consolidación de la Memoria/fisiología , ARN Mensajero/metabolismo , Regulación de la Expresión Génica , Receptores Adrenérgicos beta 3/metabolismoRESUMEN
Fractionation of the EtOH extract from aerial parts of Baccharis uncinella C. DC. (Asteraceae) led to isolation of caffeic and ferulic acids, which were identified from spectroscopic and spectrometric evidence. These compounds exhibit antioxidant and anti-inflammatory properties and have been shown to be effective in the prevention/treatment of metabolic syndrome. This study investigated whether the combined treatment of caffeic and ferulic acids exhibits a more significant beneficial effect in a mouse model with metabolic syndrome. The combination treatment with caffeic and ferulic acids was tested for 60 days in C57 mice kept on a high-fat (40%) diet. The data obtained indicated that treatment with caffeic and ferulic acids prevented gain in body weight induced by the high-fat diet and improved hyperglycemia, hypercholesterolemia and hypertriglyceridemia. The expression of a number of metabolically relevant genes was affected in the liver of these animals, showing that caffeic and ferulic acid treatment results in increased cholesterol uptake and reduced hepatic triglyceride synthesis in the liver, which is a likely explanation for the prevention of hepatic steatosis. In conclusion, the combined treatment of caffeic and ferulic acids displayed major positive effects towards prevention of multiple aspects of the metabolic syndrome and liver steatosis in an obese mouse model.
Asunto(s)
Animales , Masculino , Baccharis/química , Ácidos Cafeicos/administración & dosificación , Ácidos Cumáricos/administración & dosificación , Síndrome Metabólico/prevención & control , Sustancias Protectoras/administración & dosificación , Ácidos Cafeicos/química , Colesterol/metabolismo , Ácidos Cumáricos/química , Dieta Alta en Grasa/efectos adversos , Quimioterapia Combinada/métodos , Hígado Graso/metabolismo , Hígado Graso/patología , Síndrome Metabólico/tratamiento farmacológico , Ratones Endogámicos C57BL , Modelos Animales , Sustancias Protectoras/química , Triglicéridos/metabolismoRESUMEN
Fractionation of the EtOH extract from aerial parts of Baccharis uncinella C. DC. (Asteraceae) led to isolation of caffeic and ferulic acids, which were identified from spectroscopic and spectrometric evidence. These compounds exhibit antioxidant and anti-inflammatory properties and have been shown to be effective in the prevention/treatment of metabolic syndrome. This study investigated whether the combined treatment of caffeic and ferulic acids exhibits a more significant beneficial effect in a mouse model with metabolic syndrome. The combination treatment with caffeic and ferulic acids was tested for 60 days in C57 mice kept on a high-fat (40%) diet. The data obtained indicated that treatment with caffeic and ferulic acids prevented gain in body weight induced by the high-fat diet and improved hyperglycemia, hypercholesterolemia and hypertriglyceridemia. The expression of a number of metabolically relevant genes was affected in the liver of these animals, showing that caffeic and ferulic acid treatment results in increased cholesterol uptake and reduced hepatic triglyceride synthesis in the liver, which is a likely explanation for the prevention of hepatic steatosis. In conclusion, the combined treatment of caffeic and ferulic acids displayed major positive effects towards prevention of multiple aspects of the metabolic syndrome and liver steatosis in an obese mouse model.