Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Am J Physiol Cell Physiol ; 310(5): C373-80, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26659727

RESUMEN

The Tec family kinase Bruton's tyrosine kinase (Btk) plays an important signaling role downstream of immunoreceptor tyrosine-based activation motifs in hematopoietic cells. Mutations in Btk are involved in impaired B-cell maturation in X-linked agammaglobulinemia, and Btk has been investigated for its role in platelet activation via activation of the effector protein phospholipase Cγ2 downstream of the platelet membrane glycoprotein VI (GPVI). Because of its role in hematopoietic cell signaling, Btk has become a target in the treatment of chronic lymphocytic leukemia and mantle cell lymphoma; the covalent Btk inhibitor ibrutinib was recently approved by the US Food and Drug Administration for treatment of these conditions. Antihemostatic events have been reported in some patients taking ibrutinib, although the mechanism of these events remains unknown. We sought to determine the effects of Btk inhibition on platelet function in a series of in vitro studies of platelet activation, spreading, and aggregation. Our results show that irreversible inhibition of Btk with two ibrutinib analogs in vitro decreased human platelet activation, phosphorylation of Btk, P-selectin exposure, spreading on fibrinogen, and aggregation under shear flow conditions. Short-term studies of ibrutinib analogs administered in vivo also showed abrogation of platelet aggregation in vitro, but without measurable effects on plasma clotting times or on bleeding in vivo. Taken together, our results suggest that inhibition of Btk significantly decreased GPVI-mediated platelet activation, spreading, and aggregation in vitro; however, prolonged bleeding was not observed in a model of bleeding.


Asunto(s)
Plaquetas/efectos de los fármacos , Activación Plaquetaria/efectos de los fármacos , Agregación Plaquetaria/efectos de los fármacos , Glicoproteínas de Membrana Plaquetaria/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Administración Oral , Agammaglobulinemia Tirosina Quinasa , Animales , Plaquetas/metabolismo , Hemorragia/inducido químicamente , Humanos , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Papio , Activación Plaquetaria/fisiología , Transducción de Señal/efectos de los fármacos
2.
Thromb Res ; 135(1): 155-60, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25527332

RESUMEN

BACKGROUND: Treatment of chronic myelogenous leukemia (CML) with the BCR-ABL tyrosine kinase inhibitor (TKI) imatinib significantly improves patient outcomes. As some patients are unresponsive to imatinib, next generation BCR-ABL inhibitors such as nilotinib have been developed to treat patients with imatinib-resistant CML. The use of some BCR-ABL inhibitors has been associated with bleeding diathesis, and these inhibitors have been shown to inhibit platelet functions, which may explain the hemostasis impairment. Surprisingly, a new TKI, ponatinib, has been associated with a high incidence of severe acute ischemic cardiovascular events. The mechanism of this unexpected adverse effect remains undefined. OBJECTIVE AND METHODS: This study used biochemical and functional assays to evaluate whether ponatinib was different from the other BCR-ABL inhibitors with respect to platelet activation, spreading, and aggregation. RESULTS AND CONCLUSIONS: Our results show that ponatinib, similar to other TKIs, acts as a platelet antagonist. Ponatinib inhibited platelet activation, spreading, granule secretion, and aggregation, likely through broad spectrum inhibition of platelet tyrosine kinase signaling, and also inhibited platelet aggregate formation in whole blood under shear. As our results indicate that pobatinib inhibits platelet function, the adverse cardiovascular events observed in patients taking ponatinib may be the result of the effect of ponatinib on other organs or cell types, or disease-specific processes, such as BCR-ABL+cells undergoing apoptosis in response to chemotherapy, or drug-induced adverse effects on the integrity of the vascular endothelium in ponatinib-treated patients.


Asunto(s)
Plaquetas/efectos de los fármacos , Proteínas de Fusión bcr-abl/antagonistas & inhibidores , Imidazoles/antagonistas & inhibidores , Motivo de Activación del Inmunorreceptor Basado en Tirosina , Piridazinas/antagonistas & inhibidores , Secuencias de Aminoácidos , Apoptosis , Plaquetas/citología , Colágeno/química , Células Endoteliales/citología , Fibrinógeno/química , Humanos , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Selectina-P/química , Fosfatidilserinas/química , Fosforilación , Activación Plaquetaria , Agregación Plaquetaria , Resistencia al Corte , Transducción de Señal , Tirosina/química
3.
Am J Physiol Cell Physiol ; 305(5): C519-28, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23784547

RESUMEN

Regulation of the platelet actin cytoskeleton by the Rho family of small GTPases is essential for the proper maintenance of hemostasis. However, little is known about how intracellular platelet activation from Rho GTPase family members, including Rac, Cdc42, and Rho, translate into changes in platelet actin structures. To better understand how Rho family GTPases coordinate platelet activation, we identified platelet proteins associated with Rac1, a Rho GTPase family member, and actin regulatory protein essential for platelet hemostatic function. Mass spectrometry analysis revealed that upon platelet activation with thrombin, Rac1 associates with a set of effectors of the p21-activated kinases (PAKs), including GIT1, ßPIX, and guanine nucleotide exchange factor GEFH1. Platelet activation by thrombin triggered the PAK-dependent phosphorylation of GIT1, GEFH1, and other PAK effectors, including LIMK1 and Merlin. PAK was also required for the thrombin-mediated activation of the MEK/ERK pathway, Akt, calcium signaling, and phosphatidylserine (PS) exposure. Inhibition of PAK signaling prevented thrombin-induced platelet aggregation and blocked platelet focal adhesion and lamellipodia formation in response to thrombin. Together, these results demonstrate that the PAK signaling system is a key orchestrator of platelet actin dynamics, linking Rho GTPase activation downstream of thrombin stimulation to PAK effector function, MAP kinase activation, calcium signaling, and PS exposure in platelets.


Asunto(s)
Plaquetas/efectos de los fármacos , Activación Plaquetaria/efectos de los fármacos , Trombina/farmacología , Quinasas p21 Activadas/metabolismo , Citoesqueleto de Actina/efectos de los fármacos , Citoesqueleto de Actina/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Plaquetas/citología , Plaquetas/metabolismo , Adhesión Celular/efectos de los fármacos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Regulación de la Expresión Génica , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Humanos , Quinasas Lim/genética , Quinasas Lim/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Neurofibromina 2/genética , Neurofibromina 2/metabolismo , Fosforilación , Agregación Plaquetaria/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Seudópodos/efectos de los fármacos , Seudópodos/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho , Transducción de Señal , Quinasas p21 Activadas/genética , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rac1/metabolismo
4.
Arterioscler Thromb Vasc Biol ; 33(7): 1544-51, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23640496

RESUMEN

OBJECTIVE: Rho GTPase proteins play a central role in regulating the dynamics of the platelet actin cytoskeleton. Yet, little is known regarding how Rho GTPase activation coordinates platelet activation and function. In this study, we aimed to characterize the role of the Rho GTPase effector, p21 activated kinase (PAK), in platelet activation, lamellipodia formation, and aggregate formation under shear. APPROACH AND RESULTS: Stimulation of platelets with the glycoprotein receptor VI agonist, collagen-related peptide, rapidly activated PAK in a time course preceding phosphorylation of PAK substrates, LIM domain kinase LIMK1 and the MAPK/ERK kinase MEK, and the subsequent activation of MAPKs and Akt. Pharmacological inhibitors of PAK blocked signaling events downstream of PAK and prevented platelet secretion as well as platelet aggregation in response to collagen-related peptide. PAK inhibitors also prevented PAK activation and platelet spreading on collagen surfaces. PAK was also required for the formation of platelet aggregates and to maintain aggregate stability under physiological shear flow conditions. CONCLUSIONS: These results suggest that PAK serves as an orchestrator of platelet functional responses after activation downstream of the platelet collagen receptor, glycoprotein receptor VI.


Asunto(s)
Plaquetas/enzimología , Activación Plaquetaria , Agregación Plaquetaria , Glicoproteínas de Membrana Plaquetaria/metabolismo , Seudópodos/enzimología , Transducción de Señal , Quinasas p21 Activadas/sangre , Plaquetas/efectos de los fármacos , Proteínas Portadoras/farmacología , Forma de la Célula , Activación Enzimática , Humanos , Quinasas Lim/sangre , Quinasas Quinasa Quinasa PAM/sangre , Péptidos/farmacología , Fosforilación , Activación Plaquetaria/efectos de los fármacos , Agregación Plaquetaria/efectos de los fármacos , Glicoproteínas de Membrana Plaquetaria/agonistas , Inhibidores de Proteínas Quinasas/farmacología , Seudópodos/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Estrés Mecánico , Factores de Tiempo , Quinasas p21 Activadas/antagonistas & inhibidores
5.
J Mol Signal ; 6: 11, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21884615

RESUMEN

BACKGROUND: Blood platelets undergo a carefully regulated change in shape to serve as the primary mediators of hemostasis and thrombosis. These processes manifest through platelet spreading and aggregation and are dependent on platelet actin cytoskeletal changes orchestrated by the Rho GTPase family member Rac1. To elucidate how Rac1 is regulated in platelets, we captured Rac1-interacting proteins from platelets and identified Rac1-associated proteins by mass spectrometry. FINDINGS: Here, we demonstrate that Rac1 captures the Rac guanine nucleotide exchange factor P-Rex1 from platelet lysates. Western blotting experiments confirmed that P-Rex1 is expressed in platelets and associated with Rac1. To investigate the functional role of platelet P-Rex1, platelets from P-Rex1-/--deficient mice were treated with platelet agonists or exposed to platelet activating surfaces of fibrinogen, collagen and thrombin. Platelets from P-Rex1-/- mice responded to platelet agonists and activating surfaces similarly to wild type platelets. CONCLUSIONS: These findings suggest that P-Rex1 is not required for Rac1-mediated platelet activation and that the GEF activities of P-Rex1 may be more specific to GPCR chemokine receptor mediated processes in immune cells and tumor cells.

6.
Blood ; 118(11): 3129-36, 2011 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-21757621

RESUMEN

Platelet activation and thrombus formation are under the control of signaling systems that integrate cellular homeostasis with cytoskeletal dynamics. Here, we identify a role for the ribosome protein S6 kinase (S6K1) and its upstream regulator mTOR in the control of platelet activation and aggregate formation under shear flow. Platelet engagement of fibrinogen initiated a signaling cascade that triggered the activation of S6K1 and Rac1. Fibrinogen-induced S6K1 activation was abolished by inhibitors of Src kinases, but not Rac1 inhibitors, demonstrating that S6K1 acts upstream of Rac1. S6K1 and Rac1 interacted in a protein complex with the Rac1 GEF TIAM1 and colocalized with actin at the platelet lamellipodial edge, suggesting that S6K1 and Rac1 work together to drive platelet spreading. Pharmacologic inhibitors of mTOR and S6K1 blocked Rac1 activation and prevented platelet spreading on fibrinogen, but had no effect on Src or FAK kinase activation. mTOR inhibitors dramatically reduced collagen-induced platelet aggregation and promoted the destabilization of platelet aggregates formed under shear flow conditions. Together, these results reveal novel roles for S6K1 and mTOR in the regulation of Rac1 activity and provide insights into the relationship between the pharmacology of the mTOR system and the molecular mechanisms of platelet activation.


Asunto(s)
Activación Plaquetaria/genética , Agregación Plaquetaria/genética , Proteínas Quinasas S6 Ribosómicas 70-kDa/fisiología , Serina-Treonina Quinasas TOR/fisiología , Proteína de Unión al GTP rac1/fisiología , Velocidad del Flujo Sanguíneo/fisiología , Adhesión Celular/genética , Células Cultivadas , Activación Enzimática/fisiología , Humanos , Fosforilación , Seudópodos/genética , Seudópodos/metabolismo , Seudópodos/fisiología , Proteínas Quinasas S6 Ribosómicas 70-kDa/genética , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rac1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA