Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Open Med ; 3(2): e69-91, 2009 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-19946396

RESUMEN

BACKGROUND: Asynchronous telehealth captures clinically important digital samples (e.g., still images, video, audio, text files) and relevant data in one location and subsequently transmits these files for interpretation at a remote site by health professionals without requiring the simultaneous presence of the patient involved and his or her health care provider. Its utility in the health care system, however, still remains poorly defined. We conducted this scoping review to determine the impact of asynchronous telehealth on health outcomes, process of care, access to health services, and health resources. METHODS: A search was performed up to December 2006 of MEDLINE, CINAHL, HealthSTAR, the Database of Abstracts of Reviews of Effectiveness, and The Cochrane Library. Studies were included if they contained original data on the use of asynchronous telehealth and were published in English in a peer-reviewed journal. Two independent reviewers screened all articles and extracted data, reaching consensus on the articles and data identified. Data were extracted on general study characteristics, clinical domain, technology, setting, category of outcome, and results. Study quality (internal validity) was assessed using the Jadad scale for randomized controlled trials and the Downs and Black index for non-randomized studies. Summary data were categorized by medical specialty and presented qualitatively. RESULTS: The scoping review included 52 original studies from 238 citations identified; of these 52, almost half focused on the use of telehealth in dermatology. Included studies were characterized by diverse designs, interventions, and outcomes. Only 16 studies were judged to be of high quality. Most studies showed beneficial effects in terms of diagnostic accuracy, wait times, referral management, and satisfaction with services. Evidence on the impact of asynchronous telehealth on resource use in dermatology suggests a reduction in the number of, or avoidance of, in-person visits. Reports from other clinical domains also described the avoidance of unnecessary transfer of patients. CONCLUSIONS: A significant portion of the asynchronous telehealth literature involves its use in dermatology. Although the quality of many original studies remains poor, at least within dermatology, there is consistent evidence suggesting that asynchronous telehealth could lead to shorter wait times, fewer unnecessary referrals, high levels of patient and provider satisfaction, and equivalent (or better) diagnostic accuracy when compared with face-to-face consultations. With the exception of a few studies in pediatric asthma, the impact of this intervention on individual health outcomes remains unknown.

2.
Stud Health Technol Inform ; 137: 340-5, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18560095

RESUMEN

Information and Communication Technologies (ICTs) are revolutionizing how healthcare systems deliver top-quality care to citizens. In this way, Open Source Software (OSS) has demonstrated to be an important strategy to spread ICTs use. Several human and technological barriers in adopting OSS for healthcare have been identified. Human barriers include user acceptance, limited support, technical skillfulness, awareness, resistance to change, etc., while Technological barriers embrace need for open standards, heterogeneous OSS developed without normalization and metrics, lack of initiatives to evaluate existing health OSS and need for quality control and functional validation. The goals of PESCA project are to create a platform of interoperable modules to evaluate, classify and validate good practices in health OSS. Furthermore, a normalization platform will provide interoperable solutions in the fields of healthcare services, health surveillance, health literature, and health education, knowledge and research. Within the platform, the first goal to achieve is the setup of the collaborative work infrastructure. The platform is being organized as a Social Network which works to evaluate five scopes of every existing open source tools for eHealth: Open Source Software, Quality, Pedagogical, Security and privacy and Internationalization/I18N. In the meantime, the knowledge collected from the networking will configure a Good Practice Repository on eHealth promoting the effective use of ICT on behalf of the citizen's health.


Asunto(s)
Redes Comunitarias , Almacenamiento y Recuperación de la Información , Internet , Programas Informáticos , Telemedicina , Redes Comunitarias/organización & administración , Redes Comunitarias/normas , Humanos , Cooperación Internacional , Estándares de Referencia , Transferencia de Tecnología , Telemedicina/organización & administración , Telemedicina/normas
3.
Conf Proc IEEE Eng Med Biol Soc ; 2005: 7139-42, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-17281922

RESUMEN

New wireless technologies make possible the implementation of high level integration wireless devices which allow the replacement of traditional large wired monitoring devices. This kind of devices favours at-home hospitalization, reducing the affluence to sanitary assistance centers to make routine controls. This fact causes a really favourable social impact, especially for elder people, rural-zone inhabitant, chronic patients and handicapped people. Furthermore, it offers new functionalities to physicians and will reduce the sanitary cost. Among these functionalities, biomedical signals can be sent to other devices (screen, PDA, PC...) or processing centers, without restricting the patients' mobility. The aim of this project is the development and implementation of a reduced size multi-channel electrocardiograph based on IEEE 802.11, which allows wireless monitoring of patients, and the insertion of the information into the TCP/IP Hospital network.

4.
Conf Proc IEEE Eng Med Biol Soc ; 2005: 2433-6, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-17282729

RESUMEN

Most of the patients who are in hospitals and, increasingly, patients controlled remotely from their homes, at-home monitoring, are continuously monitored in order to control their evolution. The medical devices used up to now, force the sanitary staff to go to the patients' room to control the biosignals that are being monitored, although in many cases, patients are in perfect conditions. If patient is at home, it is he or she who has to go to the hospital to take the record of the monitored signal. New wireless technologies, such as BlueTooth and WLAN, make possible the deployment of systems that allow the display and storage of those signals in any place where the hospital intranet is accessible. In that way, unnecessary displacements are avoided. This paper presents a network architecture that allows the identification of the biosignal acquisition device as IP network nodes. The system is based on a TCP/IP architecture which is scalable and avoids the deployment of a specific purpose network.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA