Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Phys Chem A ; 119(23): 5932-41, 2015 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-25336282

RESUMEN

The intrinsic conformational landscape of two phenylalanine-containing protein chain models (-Gly-Phe- and -Ala-Phe- sequences) has been investigated theoretically and experimentally in the gas phase. The near UV spectroscopy (first ππ* transition of the Phe ring) is obtained experimentally under jet conditions where the conformational features can be resolved. Single-conformation IR spectroscopy in the NH stretch region is then obtained by IR/UV double resonance in the ground state, leading to resolved vibrational spectra that are assigned in terms of conformation and H-bonding content from comparison with quantum chemistry calculations. For the main conformer, whose UV spectrum exhibits a significant Franck-Condon activity in low frequency modes involving peptide backbone motions relative to the Phe chromophore, excited state IR spectroscopy has also been recorded in a UV/IR/UV experiment. The NH stretch spectral changes observed in such a ππ* labeling experiment enable us to determine those NH bonds that are coupled to the phenyl ring; they are compared to CC2 excited state calculations to quantify the geometry change upon ππ* excitation. The complete and consistent series of data obtained enable us to propose an unambiguous assignment for the gallery of conformers observed and to demonstrate that, in these two sequences, three conceptually important local structural motifs of proteins (ß-strands, 27 ribbons, and ß-turns) are represented. The satisfactory agreement between the experimental conformational distribution and the predicted landscape anticipated from the DFT-D approach demonstrates the capabilities of a theoretical method that accounts for dispersive interactions. It also shows that the flaws, inherent to a resonant two-photon ionization detection scheme, often evoked for aromatic chromophores, do not seem to be significant in the case of Phe.


Asunto(s)
Péptidos/química , Fenilalanina/química , Teoría Cuántica , Análisis Espectral , Rayos Láser , Modelos Moleculares , Estructura Secundaria de Proteína , Rayos Ultravioleta
2.
Phys Chem Chem Phys ; 16(40): 22192-200, 2014 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-25213197

RESUMEN

The primary step of the near UV photophysics of a phenylalanine residue is investigated in one- and two-color pump-probe R2PI nanosecond experiments carried out on specific conformers of the Ac-Gly-Phe-NH2 molecule and related neutral compounds isolated in a supersonic expansion. Compared to toluene, whose ππ* state photophysics is dominated by intersystem crossing with a lifetime of ∼80 ns at the origin, the first ππ* state of Phe in the peptide environment is systematically found to be shorter-lived. The lifetime at the origin of transition is found to be significantly shortened in the presence of a primary amide (-CONH2) group (20-60 ns, depending on the conformer considered), demonstrating the existence of an additional non-radiative relaxation channel related to this chemical group. The quenching effect induced by the peptide environment is still more remarkable beyond the origin of the ππ* state, since vibronic bands of one of the 4 conformers observed (the 27-ribbon conformation) become barely detectable in the ns R2PI experiment, suggesting a significant conformer-selective lifetime shortening (below 100 ps). These results on dipeptides, which extend previous investigations on shorter Phe-containing molecules (N-Ac-Phe-NH2 and N-Ac-Phe-NH-Me), confirm the existence of conformer-dependent non-radiative deactivation processes, whose characteristic timescales range from tens of ns down to hundreds of ps or below. This dynamics is assigned to two distinct mechanisms: a first one, consistent with an excitation energy transfer from the optically active ππ* state to low-lying amide nπ* excited states accessed through conical intersections, especially in the presence of a C-terminal primary amide group (-CONH2); a second one, responsible for the short lifetimes in 2(7) ribbon structures, would be more specifically triggered by phenyl ring vibrational excitations. Implications in terms of spectroscopic probing of Phe in a peptide environment, especially in the presence of a quenching amide group, are discussed.


Asunto(s)
Dipéptidos/aislamiento & purificación , Rayos Láser , Fenilalanina/química , Teoría Cuántica , Rayos Ultravioleta , Dipéptidos/química , Conformación Molecular , Procesos Fotoquímicos , Espectrofotometría Ultravioleta
3.
Phys Chem Chem Phys ; 16(6): 2285-8, 2014 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-24382606

RESUMEN

A conformation-selective photophysics study in phenylalanine model peptides, combining pump-probe gas phase experiments and excited state calculations, highlights for the first time the quenching properties of a primary amide group (through its nπ* excited state) along with the effect of vibrational energy that facilitates access to the conical intersection area.


Asunto(s)
Péptidos/química , Fenilalanina/química , Amidas/química , Modelos Moleculares , Rayos Ultravioleta
4.
J Phys Chem B ; 117(17): 4945-55, 2013 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-23551297

RESUMEN

Aromatic amino acids are known for their hydrophobicity and the active role they play in protein folding. Here, we investigate the intrinsic propensity of small peptides to form hydrophobic domains in the absence of solvent water molecules. The structures of three aromatic-rich isolated peptides, Ac-Phe-Phe-NH2 (FF), Ac-Trp-Tyr-NH2 (WY), and Ac-Phe-Phe-Phe-NH2 (FFF), all in the gas phase, have been studied by infrared-ultraviolet (IR/UV) double resonance laser spectroscopy, aided by dispersion-corrected density functional theory (DFT-D) calculations. Spontaneous formation of hydrophobic domains is systematically observed, whatever the secondary structure adopted by the backbone. Various types of aromatic-aromatic arrangements have been identified and associated to specific secondary structures, illustrating the interplay between the hydrophobic clusters and the backbone. Backbone NH amide groups surrounded by aromatic rings have also been evidenced and are found to contribute significantly to the stabilization of aromatic pairs. These results suggest that the formation of aromatic clusters involving contiguous residues might be a very efficient process leading to the formation of hydrophobic domains in the early stages of protein folding, well before a hydrophobic collapse into the tertiary structure.


Asunto(s)
Gases/química , Péptidos/química , Dipéptidos/química , Dipéptidos/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Oligopéptidos/química , Oligopéptidos/metabolismo , Péptidos/metabolismo , Pliegue de Proteína , Estructura Secundaria de Proteína , Espectrofotometría Infrarroja
5.
J Am Chem Soc ; 134(50): 20340-51, 2012 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-23171214

RESUMEN

The mechanisms of nonradiative deactivation of a phenylalanine residue after near-UV photoexcitation have been investigated in an isolated peptide chain model (N-acetylphenylalaninylamide, NAPA) both experimentally and theoretically. Lifetime measurements at the origin of the first ππ* state of jet-cooled NAPA molecules have shown that (i) among the three most stable conformers of the molecule, the folded conformer NAPA B is ∼50-times shorter lived than the extended major conformer NAPA A and (ii) this lifetime is virtually insensitive to deuteration at the NH(2) and NH sites. Concurrent time-dependent density functional theory (TDDFT) based nonadiabatic dynamics simulations in the full dimensionality, carried out for the NAPA B conformer, provided direct insights on novel classes of ultrafast deactivation mechanisms, proceeding through several conical intersections and leading in fine to the ground state. These mechanisms are found to be triggered either (i) by a stretch of the N(Phe)H bond, which leads to an H-transfer to the ring, or (ii) by specific backbone amide distortions. The potential energy surfaces of the NAPA conformers along these critical pathways have been characterized more accurately using the coupled cluster doubles (CC2) method and shown to exhibit barriers that can be overcome with moderate excess energies. These results analyzed in the light of the experimental findings enabled us to assign the short lifetime of NAPA B conformer to a number of easily accessible exit channels from the initial ππ* surface, most importantly the one involving a transfer of electronic excitation to an nπ* surface, induced by distortions of the backbone peptide bond.


Asunto(s)
Péptidos/química , Fenilalanina/química , Procesos Fotoquímicos , Modelos Moleculares , Simulación de Dinámica Molecular , Espectrofotometría Ultravioleta
6.
J Phys Chem Lett ; 3(6): 755-9, 2012 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26286285

RESUMEN

Despite of being ubiquitous in proteins, NHbackbone···S hydrogen bonds linking the sulfur atom of methionine or cysteine to backbone NH groups remain poorly documented. Here, we report vibrationally resolved IR NH stretch spectra of two methionine-containing dipeptides (Ac-Phe-Met-NH2 and Ac-Met-Phe-NH2). The conformations observed for both molecules, assigned with the help of DFT-D quantum chemistry, provide spectroscopic evidence for the formation of NHbackbone···S H-bonds, surprisingly strong enough to challenge the classical intrabackbone NH···O═C H-bonds. The methionine side chain is found to fold locally, forming a H-bond with the neighboring amide groups (NH(i) or NH(i+1)). Comparison with protein data bank structural information shows that such a local folding is also common in proteins where it concerns 24% of the methionine residues that have a sulfur atom linked to a backbone NH group. This convergence between the strength of these NH···S H-bonds and protein structural data illustrates their contribution to the stability of protein chains.

7.
J Am Chem Soc ; 133(11): 3931-42, 2011 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-21361380

RESUMEN

The formation of monohydrates of capped phenylalanine model peptides, CH(3)-CO-Phe-NH(2) and CH(3)-CO-Phe-NH-CH(3), in a supersonic expansion has been investigated using laser spectroscopy and quantum chemistry methods. Conformational distributions of the monohydrates have been revealed by IR/UV double-resonance spectroscopy and their structures assigned by comparison with DFT-D calculations. A careful analysis of the final hydrate distribution together with a detailed theoretical investigation of the potential energy surface of the monohydrates demonstrates that solvation occurs from the conformational distribution of the isolated peptide monomers. The distribution of the monohydrates appears to be strongly dependent on both the initial monomer conformation (extended or folded backbone) and the solvation site initially occupied by the water molecule. The solvation processes taking place during the cooling can be categorized as follows: (a) solvation without significant structural changes of the peptide, (b) solvation inducing significant distortions of the backbone but retaining the secondary structure, and (c) solvation triggering backbone isomerizations, leading to a modification of the peptide secondary structure. It is observed that solvation by a single water molecule can fold a ß-strand into a γ-turn structure (type c) or induce a significant opening of a γ-turn characterized by an elongated C(7) hydrogen bond (type b). These structural changes can be considered as a first step toward the polyproline II condensed-phase structure, illustrating the role played by the very first water molecule in the solvation process.


Asunto(s)
Modelos Moleculares , Péptidos/química , Fenilalanina/química , Agua/química , Estructura Secundaria de Proteína , Espectrofotometría Infrarroja , Espectrofotometría Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA