Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Insects ; 14(6)2023 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-37367381

RESUMEN

Tapachula, Mexico, a tropical city, is an endemic area for dengue, in addition to several outbreaks in the last decade with chikungunya and zika. As part of the migratory corridor from Central to North America and the risks of scattered infectious diseases that this implies, the identification and distribution of potential disease vectors in and around residential areas are essential in terms of entomological surveillance for the prevention of disease outbreaks. The identification of mosquito species of medical importance coexisting in houses and cemeteries in Tapachula and two semiurban sites in southern Chiapas was investigated. Adult mosquitoes were collected from May to December 2018, resting inside and outside houses and in the tombstones and fallen tree leaves in cemeteries. A total of 10,883 mosquitoes belonging to three vector species were collected across 20 sites; 6738 were from neighborhood houses, of which 55.4% were Culex quinquefasciatus, 41.6% Aedes aegypti, and 2.9% Ae. albopictus. Aedes aegypti was the most common mosquito resting inside houses (56.7%), while Ae. albopictus and Cx. quinquefasciatus were mostly found resting outside houses (75.7%). In the cemeteries, Cx. quinquefasciatus (60.8%) and Ae. albopictus (37.3%) were the most abundant, while Ae. aegypti (1.9%) was the least abundant. This is the first report to identify adults of three major disease vector species coexisting in the domestic environment of urban and semiurban sites and Ae. albopictus adult resting inside of urban houses in Mexico. It would be opportune to consider comprehensive strategies that can be applied in this region to control the three species at the same time and avoid outbreaks of the diseases they transmit.

2.
Artículo en Inglés | MEDLINE | ID: mdl-36901269

RESUMEN

Chiapas State comprises the largest malaria foci from Mexico, and 57% of the autochthonous cases in 2021, all with Plasmodium vivax infections, were reported in this State. Southern Chiapas is at constant risk of cases imported due to migratory human flow. Since chemical control of vector mosquitoes is the main entomological action implemented for the prevention and control of vector-borne diseases, this work aimed to investigate the susceptibility of Anopheles albimanus to insecticides. To this end, mosquitoes were collected in cattle in two villages in southern Chiapas in July-August 2022. Two methods were used to evaluate the susceptibility: the WHO tube bioassay and the CDC bottle bioassay. For the latter, diagnostic concentrations were calculated. The enzymatic resistance mechanisms were also analyzed. CDC diagnostic concentrations were obtained; 0.7 µg/mL deltamethrin, 12 µg/mL permethrin, 14.4 µg/mL malathion, and 2 µg/mL chlorpyrifos. Mosquitoes from Cosalapa and La Victoria were susceptible to organophosphates and to bendiocarb, but resistant to pyrethroids, with mortalities between 89% and 70% (WHO), and 88% and 78% (CDC), for deltamethrin and permethrin, respectively. High esterase levels are suggested as the resistance mechanism involved in the metabolism of pyrethroids in mosquitoes from both villages. Mosquitoes from La Victoria might also involve cytochrome P450. Therefore, organophosphates and carbamates are suggested to currently control An. albimanus. Its use might reduce the frequency of resistance genes to pyrethroids and vector abundance and may impede the transmission of malaria parasites.


Asunto(s)
Anopheles , Cloropirifos , Insecticidas , Malaria , Piretrinas , Humanos , Animales , Bovinos , Permetrina , México , Resistencia a los Insecticidas/genética , Control de Mosquitos/métodos , Malaria/prevención & control , Mosquitos Vectores , Insecticidas/farmacología
3.
PLoS Negl Trop Dis ; 15(9): e0009746, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34570792

RESUMEN

BACKGROUND: Insecticide use continues as the main strategy to control Aedes aegypti, the vector of dengue, Zika, chikungunya, and yellow fever. In the city of Tapachula, Mexico, mosquito control programs switched from pyrethroids to organophosphates for outdoor spatial spraying in 2013. Additionally, the spraying scheme switched from total coverage to focused control, prioritizing areas with higher entomological-virological risk. Five years after this strategy had been implemented, we evaluated the status and variability of insecticide resistance among Ae. aegypti collected at 26 sites in Tapachula. METHODOLOGY/PRINCIPAL FINDINGS: We determined the lethal concentrations at 50% of the tested populations (LC50) using a bottle bioassay, and then, we calculated the resistance ratio (RR) relative to the susceptible New Orleans strain. Permethrin and deltamethrin (pyrethroids), chlorpyrifos and malathion (organophosphates), and bendiocarb (carbamate) were tested. The frequencies of the substitutions V1016I and F1534C, which are in the voltage-gated sodium channel and confer knockdown-resistance (kdr) to pyrethroid insecticides, were calculated. Despite 5 years having passed since the removal of pyrethroids from the control programs, Ae. aegypti remained highly resistant to permethrin and deltamethrin (RR > 10-fold). In addition, following 5 years of chlorpyrifos use, mosquitoes at 15 of 26 sites showed moderate resistance to chlorpyrifos (5- to 10-fold), and the mosquitoes from one site were highly resistant. All sites had low resistance to malathion (< 5-fold). Resistance to bendiocarb was low at 19 sites, moderate at five, and high at two. Frequencies of the V1016I ranged from 0.16-0.71, while C1534 approached fixation at 23 sites (0.8-1). Resistance profiles and kdr allele frequencies varied across Tapachula. The variability was not associated with a spatial pattern at the scale of the sampling. CONCLUSION/SIGNIFICANCE: Mosquito populations respond to selection pressure at a focal scale in the field. Spatial variation across sites highlights the importance of testing multiple sites within geographical regions.


Asunto(s)
Aedes/efectos de los fármacos , Resistencia a los Insecticidas/genética , Insecticidas/farmacología , Aedes/genética , Distribución Animal , Animales , Insecticidas/clasificación , México/epidemiología , Control de Mosquitos
4.
J Med Entomol ; 58(2): 739-748, 2021 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-33034352

RESUMEN

There are major public health concerns regarding the spread of mosquito-borne diseases such as dengue, Zika, and chikungunya, which are mainly controlled by using insecticides against the vectors, Aedes aegypti (Linnaeus) and Aedes albopictus (Skuse). Pyrethroids are the primary class of insecticides used for vector control, due to their rapid knockdown effect and low toxicity to vertebrates. Unfortunately, continued use of pyrethroids has led to widespread insecticide resistance in Ae. aegypti; however, we lack information for Ae. albopictus-a sympatric species in Chiapas since 2002. In this study, we evaluated the permethrin resistance status of Ae. albopictus collected from Mexico and Texas. We also selected for permethrin resistance in the laboratory and investigated the potential mechanisms conferring resistance in this species. Knockdown resistance mutations, specifically F1534C, in the voltage-gated sodium channel gene, and increased activity of detoxifying enzymes were evaluated. Low levels of permethrin resistance (<2.4-fold) were observed in our field populations of Ae. albopictus and the F1534C mutation was not detected in any of the sites. Low levels of resistance were also observed in the artificially selected strain. There was significantly higher cytochrome P450 activity in our permethrin-selected and nonselected strains from Mexico compared to the control strain. Our results suggest the Ae. albopictus sampled from 2016 are mostly susceptible to pyrethroids. These results contrast with the high levels of permethrin resistance (>58-fold) found in Ae. aegypti from the same sites in Mexico. This research indicates the importance of continued monitoring of Ae. albopictus populations to prevent resistance from developing in the future.


Asunto(s)
Aedes , Resistencia a los Insecticidas/genética , Permetrina/farmacología , Aedes/efectos de los fármacos , Aedes/genética , Animales , Genes de Insecto , Proteínas de Insectos/genética , Insecticidas/farmacología , México , Control de Mosquitos , Mosquitos Vectores/efectos de los fármacos , Mosquitos Vectores/genética , Mutación , Piretrinas/farmacología , Enfermedades Transmitidas por Vectores/prevención & control , Enfermedades Transmitidas por Vectores/transmisión , Canales de Sodio Activados por Voltaje/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA