Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros











Intervalo de año de publicación
1.
Plants (Basel) ; 13(16)2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39204697

RESUMEN

Strawberry fruit is highly appreciated worldwide for its organoleptic and healthy properties. However, this plant is attacked by many pathogenic fungi, which significantly affect fruit production and quality at pre- and post-harvest stages, making chemical applications the most effective but undesirable strategy to control diseases that has been found so far. Alternatively, genetic manipulation, employing plant key genes involved in defense, such as members of the NPR-like gene family, has been successful in many crops to improve resistance. The identification and use of the endogenous counterpart genes in the plant of interest (as it is the case of strawberry) is desirable as it would increase the favorable outcome and requires prior knowledge of their defense-related function. Using RNAi technology in strawberry, transient silencing of Fragaria ananassa NPR3 members in fruit significantly reduced tissue damage after Colletotrichum acutatum infection, whereas the ectopic expression of either FaNPR3.1 or FaNPR3.2 did not have an apparent effect. Furthermore, the ectopic expression of FaNPR3.2 in Arabidopsis thaliana double-mutant npr3npr4 reverted the disease resistance phenotype to Pseudomonas syringe to wild-type levels. Therefore, the results revealed that members of the strawberry FaNPR3 clade negatively regulate the defense response to pathogens, as do their Arabidopsis AtNPR3/AtNPR4 orthologs. Also, evidence was found showing that FaNPR3 members act in strawberry (F. ananassa) as positive regulators of WRKY genes, FaWRKY19 and FaWRKY24; additionally, in Arabidopsis, FaNPR3.2 negatively regulates its orthologous genes AtNPR3/AtNPR4. We report for the first time the functional characterization of FaNPR3 members in F. ananassa, which provides a relevant molecular basis for the improvement of resistance in this species through new breeding technologies.

2.
PLoS Pathog ; 20(1): e1011866, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38236788

RESUMEN

Rosellinia necatrix is a prevalent soil-borne plant-pathogenic fungus that is the causal agent of white root rot disease in a broad range of host plants. The limited availability of genomic resources for R. necatrix has complicated a thorough understanding of its infection biology. Here, we sequenced nine R. necatrix strains with Oxford Nanopore sequencing technology, and with DNA proximity ligation we generated a gapless assembly of one of the genomes into ten chromosomes. Whereas many filamentous pathogens display a so-called two-speed genome with more dynamic and more conserved compartments, the R. necatrix genome does not display such genome compartmentalization. It has recently been proposed that fungal plant pathogens may employ effectors with antimicrobial activity to manipulate the host microbiota to promote infection. In the predicted secretome of R. necatrix, 26 putative antimicrobial effector proteins were identified, nine of which are expressed during plant colonization. Two of the candidates were tested, both of which were found to possess selective antimicrobial activity. Intriguingly, some of the inhibited bacteria are antagonists of R. necatrix growth in vitro and can alleviate R. necatrix infection on cotton plants. Collectively, our data show that R. necatrix encodes antimicrobials that are expressed during host colonization and that may contribute to modulation of host-associated microbiota to stimulate disease development.


Asunto(s)
Antiinfecciosos , Ascomicetos , Ascomicetos/genética , Plantas , Antiinfecciosos/metabolismo
3.
Plants (Basel) ; 12(11)2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37299184

RESUMEN

Woody canker diseases caused by fungi of the Botryosphaeriaceae family are producing increasing losses in many economically important woody crops, including almond. To develop a molecular tool for the detection and quantification of the most aggressive and threatening species is of main importance. This will help to prevent the introduction of these pathogens in new orchards and to conveniently apply the appropriate control measures. Three reliable, sensitive and specific duplex qPCR assays using TaqMan probes have been designed for the detection and quantification of (a) Neofusicoccum parvum and the Neofusicoccum genus, (b) N. parvum and the Botryosphaeriaceae family and (c) Botryosphaeria dothidea and the Botryosphaeriaceae family. The multiplex qPCR protocols have been validated on artificially and naturally infected plants. Direct systems to process plant materials, without DNA purification, allowed high-throughput detection of Botryosphaeriaceae targets even in asymptomatic tissues. These results validate the qPCR using the direct sample preparation method as a valuable tool for Botryosphaeria dieback diagnosis allowing a large-scale analysis and the preventive detection of latent infection.

4.
Plants (Basel) ; 11(23)2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36501427

RESUMEN

Citrus is one of the most important fruit crops in Mediterranean countries such as Spain, which is one of the main citrus-producing countries worldwide. Soil-borne pathogens, such as Rosellinia necatrix, are relevant limiting biotic factors in fruit trees, due to their tricky management. This fungus is a polyphagous plant pathogen with worldwide distribution, causing white root rot in woody crops, including citrus trees in Spain. The objective of this study was to evaluate the tolerance of new plant material against R. necatrix infection. Therefore, plants of 12 different citrus rootstocks were inoculated with one R. necatrix isolate. During the assay, and periodically, above-ground symptoms and chlorophyll content were evaluated. At the end of the experiment, leaf area and plant biomass measures were obtained. Rootstocks B11R5T64 and B11R5T60 achieved the lowest disease incidence of symptoms and reduction of biomass, and were similar to their respective controls in chlorophyll content and leaf area. Carrizo citrange, CL-5146 and UFR-5 were the most affected rootstocks in symptoms and biomass reduction. This work provides information about R. necatrix-tolerant citrus rootstocks, which can constitute a new integrated, sustainable and effective long-term strategy to avoid white root rot.

5.
mBio ; 13(5): e0168522, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36040032

RESUMEN

We have previously discovered a virus neo-lifestyle exhibited by a capsidless positive-sense (+), single-stranded (ss) RNA virus YkV1 (family Yadokariviridae) and an unrelated double-stranded (ds) RNA virus YnV1 (proposed family "Yadonushiviridae") in a phytopathogenic ascomycete, Rosellinia necatrix. YkV1 has been proposed to replicate in the capsid provided by YnV1 as if it were a dsRNA virus and enhance YnV1 replication in return. Recently, viruses related to YkV1 (yadokariviruses) have been isolated from diverse ascomycetous fungi. However, it remains obscure whether such viruses generally show the YkV1-like lifestyle. Here, we identified partner viruses for three distinct yadokariviruses, YkV3, YkV4a, and YkV4b, isolated from R. necatrix that were coinfected with multiple dsRNA viruses phylogenetically distantly related to YnV1. We first established transformants of R. necatrix carrying single yadokarivirus cDNAs and fused them with infectants by single partner candidate dsRNA viruses. Consequently, YkV3 and YkV4s replicated only in the presence of RnMBV3 (family Megabirnaviridae) and RnMTV1 (proposed family "Megatotiviridae"), respectively. The partners were mutually interchangeable between the two YkV4 strains and three RnMTV1 strains but not between other combinations involving YkV1 or YkV3. In contrast to YkV1 enhancing YnV1 accumulation, YkV4s reduced RnMTV1 accumulation to different degrees according to strains. Interestingly, YkV4 rescued the host R. necatrix from impaired growth induced by RnMTV1. YkV3 exerted no apparent effect on its partner (RnMBV3) or host fungus. Overall, we revealed that while yadokariviruses generally require partner dsRNA viruses for replication, each yadokarivirus partners with a different dsRNA virus species in the three diverse families and shows a distinct symbiotic relation in a fungus. IMPORTANCE A capsidless (+)ssRNA virus YkV1 (family Yadokariviridae) highjacks the capsid of an unrelated dsRNA virus YnV1 (proposed family "Yadonushiviridae") in a phytopathogenic ascomycete, while YkV1 trans-enhances YnV1 replication. Herein, we identified the dsRNA virus partners of three yadokariviruses (YkV3, YkV4a, and YkV4b) with genome organization different from YkV1 as being different from YnV1 at the suborder level. Their partners were mutually interchangeable between the two YkV4 strains and three strains of the partner virus RnMTV1 (proposed family "Megatotiviridae") but not between other combinations involving YkV1 or YkV3. Unlike YkV1, YkV4s reduced RnMTV1 accumulation and rescued the host fungus from impaired growth induced by RnMTV1. YkV3 exerted no apparent effect on its partner (RnMBV3, family Megabirnaviridae) or host fungus. These revealed that while each yadokarivirus has a species-specific partnership with a dsRNA virus, yadokariviruses collectively partner extremely diverse dsRNA viruses and show three-layered complex mutualistic/antagonistic interactions in a fungus.


Asunto(s)
Ascomicetos , Virus ARN Bicatenario , Virus Fúngicos , Virus ARN , Cápside , Proteínas de la Cápside/genética , Virus ARN Bicatenario/genética , Genoma Viral , Virus ARN/genética , ARN Bicatenario/genética , ARN Viral/genética , Ascomicetos/virología , Virus Fúngicos/genética
6.
Fungal Biol ; 125(1): 69-76, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33317778

RESUMEN

Two isolates of Rosellinia necatrix (Rn118-8 and Rn480) have previously obtained from diseased avocado trees in commercial orchards of the coastal area in southern Spain. Rn118-8 and Rn480 have weak virulence on avocado plants, and are infected by R. necatrix hypovirus 2 (RnHV2). In this work, the possible biological effects of the hypovirus on R. necatrix were tested. First, RnHV2 was transmitted from each of Rn118-8 and Rn480 to a highly virulent, RnHV2-free isolate of R. necatrix (Rn400) through hyphal anastomosis, using zinc compounds which attenuate the mycelial incompatibility reactions and allow for horizontal virus transfer between vegetatively incompatible fungal strains. Next, we carried out an analysis of growth rate in vitro and a virulence test of these newly infected strains in avocado plants. We obtained five strains of Rn400 infected by RnHV2 after horizontal transmission, and showed some of them to have lower colony growth in vitro and lower virulence on avocado plants compared with virus-free Rn400. These results suggest that R. necatrix isolates infected by RnHV2 could be used as novel virocontrol agents to combat avocado white root rot.


Asunto(s)
Ascomicetos , Virus Fúngicos , Ascomicetos/patogenicidad , Ascomicetos/virología , Virus Fúngicos/fisiología , Persea/microbiología , Raíces de Plantas/microbiología , España
7.
Front Microbiol ; 11: 1064, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32670213

RESUMEN

Partitiviruses (dsRNA viruses, family Partitiviridae) are ubiquitously detected in plants and fungi. Although previous surveys suggested their omnipresence in the white root rot fungus, Rosellinia necatrix, only a few of them have been molecularly and biologically characterized thus far. We report the characterization of a total of 20 partitiviruses from 16 R. necatrix strains belonging to 15 new species, for which "Rosellinia necatrix partitivirus 11-Rosellinia necatrix partitivirus 25" were proposed, and 5 previously reported species. The newly identified partitiviruses have been taxonomically placed in two genera, Alphapartitivirus, and Betapartitivirus. Some partitiviruses were transfected into reference strains of the natural host, R. necatrix, and an experimental host, Cryphonectria parasitica, using purified virions. A comparative analysis of resultant transfectants revealed interesting differences and similarities between the RNA accumulation and symptom induction patterns of R. necatrix and C. parasitica. Other interesting findings include the identification of a probable reassortment event and a quintuple partitivirus infection of a single fungal strain. These combined results provide a foundation for further studies aimed at elucidating mechanisms that underly the differences observed.

8.
Virus Res ; 285: 198020, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32416260

RESUMEN

Rosellinia necatrix is responsible for the white rot root disease of avocado in Southern Spain. Entoleuca sp. is a fungus isolated from roots of these same trees, but it is not pathogenic in avocado. Here, we describe two new species of partitiviruses detected in isolates of the avocado sympatric fungi Entoleuca sp. and R. necatrix, termed Entoleuca partitivirus 1 (EnPV1), genus Alphapartitivirus, and Entoleuca partitivirus 2 (EnPV2), genus Betapartitivirus. For both R. necatrix and Entoleuca sp., the dsRNA of the RdRp genomic segment of EnPV1 accumulates at a higher rate than the CP dsRNA, except for a set of Entoleuca sp. isolates where titers of the CP dsRNA are 35-50 times higher than those of the RdRp dsRNA and between 250-380 times higher than the CP dsRNA titers found in the rest of Entoleuca sp. and R. necatrix isolates. For EnPV2, the accumulation rates of the RdRp dsRNA in Entoleuca sp., is in most of the cases, higher than the CP dsRNA. In contrast, in R. necatrix isolates, EnPV2 dsRNA2 generally accumulates at a higher rate. Genetic analysis of the partitiviruses revealed that there is no apparent variation in the nucleotide sequences among the strains. RNA silencing of the partitiviruses appears to be limited in Entoleuca sp., as shown by small RNA sequencing. Finally, the investigation of the presence of these partitiviruses in a fungal collection revealed that they have no role in the pathogenicity of R. necatrix in avocado or in the avirulence of Entoleuca sp. in this host.


Asunto(s)
Ascomicetos/virología , Virus Fúngicos , Persea , Virus ARN , Virus Fúngicos/clasificación , Virus Fúngicos/aislamiento & purificación , Genoma Viral , Persea/microbiología , Persea/virología , Virus ARN/clasificación , Virus ARN/aislamiento & purificación , ARN Bicatenario , ARN Viral , España
9.
Front Plant Sci ; 11: 308, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32265961

RESUMEN

The NPR1 gene encodes a key component of systemic acquired resistance (SAR) signaling mediated by salicylic acid (SA). Overexpression of NPR1 confers resistance to biotrophic and hemibiotrophic fungi in several plant species. The NPR1 gene has also been shown to be involved in the crosstalk between SAR signaling and the jasmonic acid-ethylene (JA/Et) pathway, which is involved in the response to necrotrophic fungi. The aim of this research was to generate transgenic olive plants expressing the NPR1 gene from Arabidopsis thaliana to evaluate their differential response to the hemibiotrophic fungus Verticillium dahliae and the necrotroph Rosellinia necatrix. Three transgenic lines expressing the AtNPR1 gene under the control of the constitutive promoter CaMV35S were obtained using an embryogenic line derived from a seed of cv. Picual. After maturation and germination of the transgenic somatic embryos, the plants were micropropagated and acclimated to ex vitro conditions. The level of AtNPR1 expression in the transgenic materials varied greatly among the different lines and was higher in the NPR1-780 line. The expression of AtNPR1 did not alter the growth of transgenic plants either in vitro or in the greenhouse. Different levels of transgene expression also did not affect basal endochitinase activity in the leaves, which was similar to that of control plants. Response to the hemibiotrophic pathogen V. dahliae varied with pathotype. All plants died by 50 days after inoculation with defoliating (D) pathotype V-138, but the response to non-defoliating (ND) strains differed by race: following inoculation with the V-1242 strain (ND, race 2), symptoms appeared after 44-55 days, with line NPR1-780 showing the lowest disease severity index. This line also showed good performance when inoculated with the V-1558 strain (ND, race 1), although the differences from the control were not statistically significant. In response to the necrotroph R. necatrix, all the transgenic lines showed a slight delay in disease development, with mean area under the disease progress curve (AUDPC) values 7-15% lower than that of the control.

10.
Front Plant Sci ; 10: 480, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31057583

RESUMEN

Strawberry (Fragaria ×ananassa) is a major food crop worldwide, due to the flavor, aroma and health benefits of the fruit, but its productivity and quality are seriously limited by a large variety of phytopathogens, including Colletotrichum spp. So far, key factors regulating strawberry immune response remain unknown. The FaWRKY1 gene has been previously proposed as an important element mediating defense responses in strawberry to Colletotrichum acutatum. To get further insight into the functional role that FaWRKY1 plays in the defense mechanism, Agrobacterium-mediated transient transformation was used both to silence and overexpress the FaWRKY1 gene in strawberry fruits (Fragaria ×ananassa cv. Primoris), which were later analyzed upon C. acutatum inoculation. Susceptibility tests were performed after pathogen infection comparing the severity of disease between the two agroinfiltrated opposite halves of the same fruit, one half bearing a construct either for FaWRKY1 overexpression or RNAi-mediated silencing and the other half bearing the empty vector, as control. The severity of tissue damage was monitored and found to be visibly reduced at five days after pathogen inoculation in the fruit half where FaWRKY1 was transiently silenced compared to that of the opposite control half and statistical analysis corroborated a significant reduction in disease susceptibility. Contrarily, a similar level of susceptibility was found when FaWRKY1 overexpression and control fruit samples, was compared. These results unravel a negative regulatory role of FaWRKY1 in resistance to the phytopathogenic fungus C. acutatum in strawberry fruit and contrast with the previous role described for this gene in Arabidopsis as positive regulator of resistance against the bacteria Pseudomonas syringae. Based on previous results, a tentative working model for WRKY75 like genes after pathogen infection is proposed and the expression pattern of potential downstream FaWRKY1 target genes was also analyzed in strawberry fruit upon C. acutatum infection. Our results highlight that FaWRKY1 might display different function according to species, plant tissue and/or type of pathogen and underline the intricate FaWRKY1 responsive defense regulatory mechanism taking place in strawberry against this important crop pathogen.

11.
Virology ; 532: 11-21, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30986551

RESUMEN

Four isolates of Entoleuca sp., family Xylariaceae, Ascomycota, recovered from avocado rhizosphere in Spain were analyzed for mycoviruses presence. For that, the dsRNAs from the mycelia were extracted and subjected to metagenomics analysis that revealed the presence of eleven viruses putatively belonging to families Partitiviridae, Hypoviridae, Megabirnaviridae, and orders Tymovirales and Bunyavirales, in addition to one ourmia-like virus plus other two unclassified virus species. Moreover, a sequence with 98% nucleotide identity to plant endornavirus Phaseolus vulgaris alphaendornavirus 1 has been identified in the Entoleuca sp. isolates. Concerning the virome composition, the four isolates only differed in the presence of the bunyavirus and the ourmia-like virus, while all other viruses showed common patterns. Specific primers allowed the detection by RT-PCR of these viruses in a collection of Entoleuca sp. and Rosellinia necatrix isolates obtained from roots of avocado trees. Results indicate that intra- and interspecies horizontal virus transmission occur frequently in this pathosystem.


Asunto(s)
Bunyaviridae/genética , Virus Fúngicos/genética , Genoma Viral , Persea/virología , Raíces de Plantas/virología , Tymoviridae/genética , Xylariales/virología , Secuencia de Aminoácidos , Secuencia de Bases , Bunyaviridae/clasificación , Bunyaviridae/aislamiento & purificación , Virus Fúngicos/clasificación , Virus Fúngicos/aislamiento & purificación , Secuenciación de Nucleótidos de Alto Rendimiento , Metagenómica/métodos , Micelio/virología , Conformación de Ácido Nucleico , Persea/microbiología , Filogenia , Raíces de Plantas/microbiología , ARN Bicatenario/genética , ARN Viral/genética , Alineación de Secuencia , Homología de Secuencia de Aminoácido , España , Árboles/microbiología , Árboles/virología , Tymoviridae/clasificación , Tymoviridae/aislamiento & purificación
12.
Rev. sanid. mil ; 72(5/6): 351-354, sep.-dic. 2018. graf
Artículo en Español | LILACS-Express | LILACS | ID: biblio-1020886

RESUMEN

Resumen Objetivos Reportar un caso de fístula arteriovenosa crónica como una complicación tardía por una herida de arma de fuego, la cual se manejó con colocación de una endoprótesis recubierta en arteria femoral. Diseño Se tomaron imágenes y el registro del Hospital Central Militar para reportar el caso clínico. En el siguiente artículo describimos la experiencia del Hospital Central Militar en el tratamiento de la fístula arteriovenosa crónica con el manejo endovascular.


Abstract Objectives To report a case of chronic arteriovenous fistula as a late complication of a gunshot wound, which was managed with a covered stent placement in the femoral artery. Design Images and records were taken from the Central Military Hospital to report the clinical case. In the following article, we describe the experience of the Central Military Hospital in the treatment of a chronic arteriovenous fistula with en endovascular management.

13.
Front Plant Sci ; 9: 680, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29875785

RESUMEN

The antifungal protein (AFP) produced by Aspergillus giganteus, encoded by the afp gene, has been used to confer resistance against a broad range of fungal pathogens in several crops. In this research, transgenic olive plants expressing the afp gene under the control of the constitutive promoter CaMV35S were generated and their disease response against two root infecting fungal pathogens, Verticillium dahliae and Rosellinia necatrix, was evaluated. Embryogenic cultures derived from a mature zygotic embryo of cv. 'Picual' were used for A. tumefaciens transformation. Five independent transgenic lines were obtained, showing a variable level of afp expression in leaves and roots. None of these transgenic lines showed enhanced resistance to Verticillium wilt. However, some of the lines displayed a degree of incomplete resistance to white root rot caused by R. necatrix compared with disease reaction of non-transformed plants or transgenic plants expressing only the GUS gene. The level of resistance to this pathogen correlated with that of the afp expression in root and leaves. Our results indicate that the afp gene can be useful for enhanced partial resistance to R. necatrix in olive, but this gene does not protect against V. dahliae.

14.
Front Microbiol ; 9: 778, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29867781

RESUMEN

The white rot root disease caused by Rosellinia necatrix is a major concern for avocado cultivation in Spain. Healthy escapes of avocado trees surrounded by diseased trees prompted us to hypothesize the presence of hypovirulent R. necatrix due to mycovirus infections. Recently, we reported the presence of another fungal species, Entoleuca sp., belonging to the Xylariaceae, that was also found in healthy avocado trees and frequently co-infecting the same roots than R. necatrix. We investigated the presence of mycoviruses that might explain the hypovirulence. For that, we performed deep sequencing of dsRNAs from two isolates of Entoleuca sp. that revealed the simultaneous infection of several mycoviruses, not described previously. In this work, we report a new member of the Hypoviridae, tentatively named Entoleuca hypovirus 1 (EnHV1). The complete genome sequence was obtained for two EnHV1 strains, which lengths resulted to be 14,958 and 14,984 nt, respectively, excluding the poly(A) tails. The genome shows two ORFs separated by a 32-nt inter-ORF, and both 5'- and 3'-UTRs longer than any other hypovirus reported to date. The analysis of virus-derived siRNA populations obtained from Entoleuca sp. demonstrated antiviral silencing activity in this fungus. We screened a collection of Entoleuca sp. and R. necatrix isolates and found that EnHV1 was present in both fungal species. A genetic population analysis of EnHV1 strains revealed the presence of two main clades, each of them including members from both Entoleuca sp. and R. necatrix, which suggests intra- and interspecific virus transmission in the field. Several attempts failed to cure Entoleuca sp. from EnHV1. However, all Entoleuca sp. isolates collected from avocado, whether harboring the virus or not, showed hypovirulence. Conversely, all R. necatrix isolates were pathogenic to that crop, regardless of being infected by EnHV1.

15.
Environ Microbiol ; 20(4): 1464-1483, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29411500

RESUMEN

To reveal mycovirus diversity, we conducted a search of as-yet-unexplored Mediterranean isolates of the phytopathogenic ascomycete Rosellinia necatrix for virus infections. Of seventy-nine, eleven fungal isolates tested RNA virus-positive, with many showing coinfections, indicating a virus incidence of 14%, which is slightly lower than that (approximately 20%) previously reported for extensive surveys of over 1000 Japanese R. necatrix isolates. All viral sequences were fully or partially characterized by Sanger and next-generation sequencing. These sequences appear to represent isolates of various new species spanning at least 6 established or previously proposed families such as Partiti-, Hypo-, Megabirna-, Yado-kari-, Fusagra- and Fusarividae, as well as a newly proposed family, Megatotiviridae. This observation greatly expands the diversity of R. necatrix viruses, because no hypo-, fusagra- or megatotiviruses were previously reported from R. necatrix. The sequence analyses showed a rare horizontal gene transfer event of the 2A-like protease domain between a dsRNA (phlegivirus) and a positive-sense, single-stranded RNA virus (hypovirus). Moreover, many of the newly detected viruses showed the closest relation to viruses reported from fungi other than R. necatrix, such as Fusarium spp., which are sympatric to R. necatrix. These combined results imply horizontal virus transfer between these soil-inhabitant fungi.


Asunto(s)
Virus Fúngicos/genética , Virus ARN/genética , Xylariales/virología , Secuencia de Bases , Evolución Biológica , Transferencia de Gen Horizontal/genética , Región Mediterránea , ARN Bicatenario , Análisis de Secuencia de ARN
16.
Transgenic Res ; 24(6): 979-89, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26178245

RESUMEN

The expression of antifungal genes from Trichoderma harzianum, mainly chitinases, has been used to confer plant resistance to fungal diseases. However, the biotechnological potential of glucanase genes from Trichoderma has been scarcely assessed. In this research, transgenic strawberry plants expressing the ß-1,3-glucanase gene bgn13.1 from T. harzianum, under the control of the CaMV35S promoter, have been generated. After acclimatization, five out of 12 independent lines analysed showed a stunted phenotype when growing in the greenhouse. Moreover, most of the lines displayed a reduced yield due to both a reduction in the number of fruit per plant and a lower fruit size. Several transgenic lines showing higher glucanase activity in leaves than control plants were selected for pathogenicity tests. When inoculated with Colletotrichum acutatum, one of the most important strawberry pathogens, transgenic lines showed lower anthracnose symptoms in leaf and crown than control. In the three lines selected, the percentage of plants showing anthracnose symptoms in crown decreased from 61 % to a mean value of 16.5 %, in control and transgenic lines, respectively. Some transgenic lines also showed an enhanced resistance to Rosellinia necatrix, a soil-borne pathogen causing root and crown rot in strawberry. These results indicate that bgn13.1 from T. harzianum can be used to increase strawberry tolerance to crown rot diseases, although its constitutive expression affects plant growth and fruit yield. Alternative strategies such as the use of tissue specific promoters might avoid the negative effects of bgn13.1 expression in plant performance.


Asunto(s)
Resistencia a la Enfermedad/inmunología , Fragaria/crecimiento & desarrollo , Glucano 1,3-beta-Glucosidasa/metabolismo , Enfermedades de las Plantas/inmunología , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Trichoderma/enzimología , Fragaria/inmunología , Fragaria/microbiología , Frutas/crecimiento & desarrollo , Frutas/inmunología , Frutas/microbiología , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Glucano 1,3-beta-Glucosidasa/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/inmunología , Hojas de la Planta/microbiología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/inmunología , Raíces de Plantas/microbiología , Plantas Modificadas Genéticamente/inmunología , Plantas Modificadas Genéticamente/microbiología
17.
Mol Plant Pathol ; 13(3): 226-39, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22014332

RESUMEN

UNLABELLED: White root rot caused by Rosellinia necatrix is one of the most destructive diseases of many woody plants in the temperate regions of the world, particularly in Europe and Asia. Recent outbreaks of R. necatrix around the globe have increased the interest in this pathogen. Although the ecology of the disease has been poorly studied, recent genetic and molecular advances have opened the way for future detailed studies of this fungus. TAXONOMY: Rosellinia necatrix Prilleux. Kingdom Fungi; subdivision Ascomycotina; class Euascomycetes; subclass Pyrenomycetes; order Sphaeriales, syn. Xylariales; family Xylariaceae; genus Rosellinia. IDENTIFICATION: Fungal mycelium is present on root surfaces and under the bark, forming mycelium fans, strands or cords. A typical presence of pear-shaped or pyriform swellings can be found above the hyphal septum (with diameters of up to 13 µm). Sclerotia are black, hard and spherical nodules, several millimetres in diameter. Black sclerotia crusts may also form on roots. On synthetic media, it forms microsclerotia: irregular rough bodies composed of a compact mass of melanized, interwoven hyphae with no differentiated cells. Chlamydospores are almost spherical (15 µm in diameter). Synnemata, also named coremia (0.5-1.5 mm in length), can be formed from sclerotia or from mycelial masses. Conidia (3-5 µm in length and 2.5-3 µm in width) are very difficult to germinate in vitro. Ascospores are monostichous, situated inside a cylindrical, long-stalked ascus. They are ellipsoidal and cymbiform (36-46 µm in length and 5.5-6.3 µm in width). HOST RANGE: This fungus can attack above 170 different plant hosts from 63 genera and 30 different families, including vascular plants and algae. Some are of significant economic importance, such as Coffea spp., Malus spp., Olea europaea L., Persea americana Mill., Prunus spp. and Vitis vinifera L. DISEASE SYMPTOMS: Rosellinia necatrix causes white (or Dematophora) root rot, which, by aerial symptoms, shows a progressive weakening of the plant, accompanied by a decline in vigour. The leaves wilt and dry, and the tree can eventually die. White cottony mycelium and mycelial strands can be observed in the crown and on the root surface. On woody plant roots, the fungus can be located between the bark and the wood, developing typical mycelium fans, invading the whole root and causing general rotting. DISEASE CONTROL: Some approaches have been attempted involving the use of tolerant plants and physical control (solarization). Chemical control in the field and biological control methods are still under development.


Asunto(s)
Ascomicetos/patogenicidad , Productos Agrícolas/microbiología , Hojas de la Planta/microbiología , Ascomicetos/clasificación , Ascomicetos/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA