Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Microbiol ; 2020: 8831331, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32908529

RESUMEN

Petroleum is the major energy matrix in the world whose refining generates chemical byproducts that may damage the environment. Among such waste, polycyclic aromatic hydrocarbons (PAH) are considered persistent pollutants. Sixteen of these are considered priority for remediation, and among them is benzo(a)pyrene. Amid remediation techniques, bioremediation stands out. The genus Burkholderia is amongst the microorganisms known for being capable of degrading persistent compounds; its strains are used as models to study such ability. High-throughput sequencing allows researchers to reach a wider knowledge about biodegradation by bacteria. Using transcripts and mRNA analysis, the genomic regions involved in this aptitude can be detected. To unravel these processes, we used the model B. vietnamiensis strain G4 in two experimental groups: one was exposed to benzo(a)pyrene and the other one (control) was not. Six transcriptomes were generated from each group aiming to compare gene expression and infer which genes are involved in degradation pathways. One hundred fifty-six genes were differentially expressed in the benzo(a)pyrene exposed group, from which 33% are involved in catalytic activity. Among these, the most significant genomic regions were phenylacetic acid degradation protein paaN, involved in the degradation of organic compounds to obtain energy; oxidoreductase FAD-binding subunit, related to the regulation of electrons within groups of dioxygenase enzymes with potential to cleave benzene rings; and dehydrogenase, described as accountable for phenol degradation. These data provide the basis for understanding the bioremediation of benzo(a)pyrene and the possible applications of this strain in polluted environments.

2.
Genome Biol Evol ; 12(1): 3599-3614, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31825473

RESUMEN

Microsporidia have the leanest genomes among eukaryotes, and their physiological and genomic simplicity has been attributed to their intracellular, obligate parasitic life-style. However, not all microsporidia genomes are small or lean, with the largest dwarfing the smallest ones by at least an order of magnitude. To better understand the evolutionary mechanisms behind this genomic diversification, we explore here two clades of microsporidia with distinct life histories, Ordospora and Hamiltosporidium, parasitizing the same host species, Daphnia magna. Based on seven newly assembled genomes, we show that mixed-mode transmission (the combination of horizontal and vertical transmission), which occurs in Hamiltosporidium, is found to be associated with larger and AT-biased genomes, more genes, and longer intergenic regions, as compared with the exclusively horizontally transmitted Ordospora. Furthermore, the Hamiltosporidium genome assemblies contain a variety of repetitive elements and long segmental duplications. We show that there is an excess of nonsynonymous substitutions in the microsporidia with mixed-mode transmission, which cannot be solely attributed to the lack of recombination, suggesting that bursts of genome size in these microsporidia result primarily from genetic drift. Overall, these findings suggest that the switch from a horizontal-only to a mixed mode of transmission likely produces population bottlenecks in Hamiltosporidium species, therefore reducing the effectiveness of natural selection, and allowing their genomic features to be largely shaped by nonadaptive processes.


Asunto(s)
Evolución Molecular , Genoma Fúngico , Microsporidios/genética , Transferencia de Gen Horizontal , Flujo Genético , Recombinación Genética , Selección Genética
3.
Am Nat ; 191(2): E27-E39, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29351018

RESUMEN

The emergence of queens and workers from solitary antecedents mark a major evolutionary transition in the history of life. The solitary progressive provisioning wasp Synagris cornuta, a member of the subfamily Eumeninae (basal to eusocial vespid wasps), alternates between behavioral states characterized as queenlike and worker-like. Akin to a queen in eusocial wasps, a S. cornuta female initiates construction of a cell into which she oviposits and then, similar to a worker, cares for the brood as it develops. The ovarian groundplan (OGP) hypothesis for caste origins predicts that these behavioral states are associated with cyclical changes in ovarian status, where females performing queenlike tasks have eggs and those performing worker-like tasks possess only small oocytes. Our findings show strong support for the OGP hypothesis: the ovaries of S. cornuta females undergo differential oogenesis depending on the behavioral phase: the largest oocyte in the ovaries of females building a cell progresses faster compared to that of females attending brood. Yet contrary to the OGP hypothesis, neither juvenile hormone nor ecdysteroids is associated with the reproductive cycle. Finally, the cuticular hydrocarbon profile showed no link with ovarian status, suggesting that fertility signals evolved subsequent to the emergence of group living.


Asunto(s)
Evolución Biológica , Ecdisteroides/metabolismo , Hormonas Juveniles/metabolismo , Oviparidad , Avispas/fisiología , Animales , Femenino , Hidrocarburos/metabolismo , Comportamiento de Nidificación , Ovario/crecimiento & desarrollo , Conducta Sexual Animal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA