Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Huan Jing Ke Xue ; 43(7): 3543-3551, 2022 Jul 08.
Artículo en Chino | MEDLINE | ID: mdl-35791538

RESUMEN

Taking the Xiaojiang and Xiangxi Rivers, two typical tributaries of the Three Gorges Reservoir, as examples, this study analyzed and compared the hydrodynamic, thermal stratification, and temporal and spatial differences in dissolved oxygen (DO) and their responses to the water storage process in the two tributaries through field monitoring at different stages of the 2020 impoundment period. The results showed that:① at the initial stage of water storage, the DO in the surface layer of the Xiaojiang River was higher (7.00-13.00 mg·L-1) due to atmospheric reoxygenation and phytoplankton photosynthesis, and the oxycline appeared in the water depth of 3-5 m. A large area of anoxia (DO<2.00 mg·L-1) or even an anaerobic sublayer occurred in the water below 5 m. The DO in the Xiangxi River could be divided into three layers vertically:oxygen-rich surface water (8.00-12.00 mg·L-1), middle water (6.00-8.00 mg·L-1), and low-oxygen bottom water (4.00-6.00 mg·L-1). ② Thermal stratification provided a stable physical environment, whereas the upstream inflow and vegetation decomposition in the water-level fluctuation zone increased the content of organic matter, which likely increased the oxygen consumption which was conducive to the formation of an anaerobic bottom layer. In the Xiangxi River, the risk of hypoxia in the bottom water body was low because of the oxygen replenishment from the long-term downslope-bottom density current.③ Continuous monitoring also showed that the storage of the reservoir played a significant role in the replenishment of DO in tributaries, which effectively and rapidly improved the anaerobic phenomenon in the Xiaojiang River. In the Three Gorges Reservoir, it is feasible to ameliorate the water ecological problems such as anoxia and anaerobic conditions in the tributaries via reservoir operation. This study aids understanding of the characteristics and differences of DO stratification in different tributaries of the Three Gorges Reservoir, which can provide theoretical and technical support for reservoir ecological operation.


Asunto(s)
Monitoreo del Ambiente , Oxígeno , Humanos , Hipoxia , Ríos , Agua
2.
Huan Jing Ke Xue ; 40(11): 4944-4952, 2019 Nov 08.
Artículo en Chino | MEDLINE | ID: mdl-31854560

RESUMEN

The construction of the Three Gorges Reservoir has had certain effects on the ecological environment of the water and serious phytoplankton blooms have occurred in its tributary embayment. To explore the spatial distribution of nitrogen and phosphorus nutrients and chlorophyll-a in different tributaries of the Three Gorges Reservoir, a water quality study (June 2018) was conducted in the Xiangxi River, Shengnongxi River, and Daning River of the Three Gorges Reservoir. The results showed that the average TN in the three tributaries was 1.86 mg·L-1, 1.90 mg·L-1, and 1.43 mg·L-1, respectively, and average TP was 0.09 mg·L-1, 0.07 mg·L-1, and 0.05 mg·L-1, respectively. Single-factor ANOVA analysis showed that the spatial difference in TN was significant and occurred in the following order:Shennongxi River > Xiangxi River > Daning River. There were significant differences in the spatial distribution of TP, which were in the order off Xiangxi River > Shennongxi River > Daning River. The mean concentrations of chlorophyll-a in the three tributaries was 6.41 µg·L-1, 21.39 µg·L-1, and 9.85µg·L-1, respectively. The results from the Pearson correlation analysis, showed that chlorophyll-a concentrations were closely related to TP distribution in all tributaries, but Zeu/Zmix was also correlated with the distribution of chlorophyll-a in the Shennongxi River and Daning River. The ratio of TN and TP concentrations was 22.36, 26.76, and 28.6, respectively, which revealed that TP is a critical and limiting factor affecting phytoplankton growth in its tributary embayment.


Asunto(s)
Clorofila A , Ríos , Sales (Química) , China , Clorofila , Monitoreo del Ambiente , Eutrofización , Inundaciones , Nitrógeno , Nutrientes , Fósforo , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA