Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 1059, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-35058485

RESUMEN

Patterns of diversity in pathogen genomes provide a window into the spatiotemporal spread of disease. In this study, we tested the hypothesis that Schistosoma mansoni parasites form genetic clusters that coincide with the communities of their human hosts. We also looked for genetic clustering of parasites at the sub-community level. Our data consists of 14 microsatellite DNA markers, typed from pooled DNA samples from [Formula: see text] infected individuals living in three Brazilian communities. We found a one-to-one correspondence between genetic clusters found by K-means cluster analysis and communities when [Formula: see text]. These clusters are also easily identified in a neighbor-joining tree and principal coordinates plots. K-means analysis with [Formula: see text] also reveals genetic clusters of parasites at the sub-community level. These sub-clusters also appear on the neighbor-joining tree and principal coordinates plots. A surprising finding is a genetic relationship between subgroups in widely separated human communities. This connection suggests the existence of common transmission sites that have wide influence. In summary, the genetic structure of S. mansoni in Brazil juxtaposes local isolation that is occasionally broken by long-range migration. Permanent eradication of schistosomes will require both local efforts and the identification of regional infection reservoirs.


Asunto(s)
Genética de Población , Schistosoma mansoni/genética , Esquistosomiasis mansoni/parasitología , Animales , Brasil , Análisis por Conglomerados , Interacciones Huésped-Parásitos/genética , Humanos , Repeticiones de Microsatélite , Schistosoma mansoni/aislamiento & purificación , Esquistosomiasis mansoni/transmisión
2.
Mol Biol Evol ; 25(3): 478-86, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18222947

RESUMEN

Genetic diversity in Native South Americans forms a complex pattern at both the continental and local levels. In comparing the West to the East, there is more variation within groups and smaller genetic distances between groups. From this pattern, researchers have proposed that there is more variation in the West and that a larger, more genetically diverse, founding population entered the West than the East. Here, we question this characterization of South American genetic variation and its interpretation. Our concern arises because others have inferred regional variation from the mean variation within local populations without taking into account the variation among local populations within the same region. This failure produces a biased view of the actual variation in the East. In this study, we analyze the mitochondrial DNA sequence between positions 16040 and 16322 of the Cambridge reference sequence. Our sample represents a total of 886 people from 27 indigenous populations from South (22), Central (3), and North America (2). The basic unit of our analyses is nucleotide identity by descent, which is easily modeled and proportional to nucleotide diversity. We use a forward modeling strategy to fit a series of nested models to identity by descent within and between all pairs of local populations. This method provides estimates of identity by descent at different levels of population hierarchy without assuming homogeneity within populations, regions, or continents. Our main discovery is that Eastern South America harbors more genetic variation than has been recognized. We find no evidence that there is increased identity by descent in the East relative to the total for South America. By contrast, we discovered that populations in the Western region, as a group, harbor more identity by descent than has been previously recognized, despite the fact that average identity by descent within groups is lower. In this light, there is no need to postulate separate founding populations for the East and the West because the variability in the East could serve as a source for the Western gene pools.


Asunto(s)
ADN Mitocondrial/genética , Variación Genética , Indígenas Sudamericanos/genética , Filogenia , Genética de Población , Humanos , Modelos Genéticos , América del Sur
3.
Hum Hered ; 64(3): 160-71, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17536210

RESUMEN

OBJECTIVE: To investigate the evolutionary and demographic history of the Gaucho, a distinct population of southern Brazil, relating it to their culture, to assess possible parallel continuity. METHODS: Six binary polymorphisms, an Alu insertion polymorphism (YAP) and 12 short tandem repeat loci in the non-recombining region of the Y-chromosome, as well as the sequence of the first hypervariable segment (HVS-I) of the mitochondrial DNA (mtDNA) control region were studied in 150 unrelated males born in the Pampa region of Rio Grande do Sul. RESULTS: Comparison of the results with the other Brazilian and Uruguayan populations, as well as with their putative ancestors, indicated a stronger male Spanish influence than that observed elsewhere in Brazil, a former Portuguese colony. Extensive mtDNA analyses of their Amerindian component gave clear indications of the presence there of material from extinct (Charrua), as well as extant (Guarani) tribes. CONCLUSIONS: The genetic analyses contributed in a significant way to reveal that the known cultural continuity between pre- and post-Columbian Pampa populations was also accompanied by an extraordinary genetic continuity.


Asunto(s)
Cultura , Flujo Génico , Polimorfismo Genético , Brasil/etnología , Cromosomas Humanos Y/genética , ADN Mitocondrial/genética , Efecto Fundador , Humanos , Indígenas Sudamericanos , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA