Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Geobiology ; 21(6): 770-790, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37698260

RESUMEN

The gas hydrate-bearing structure-mud volcano Kedr-1 (Lake Baikal, southern basin)-is located near the coal-bearing sediments of the Tankhoy formation of Oligocene-Miocene age and can be an ideal source of gas-saturated fluid. A significant amount of siderite minerals (FeCO3 ) were collected from sediments at depths ranging from 0.5 to 327 cm below the lake floor (cmblf). An important feature of these carbonate minerals is the extremely strong enrichment in the heavy 13 C isotope, reaching values of +33.3‰ VPDB. The δ13 C of the siderite minerals, as well as their morphology and elemental composition, and the δ13 CDIC of the co-existing pore water, differed across layers of the core, which implies at least two generations of siderite formation. Here, we leverage mineralogical and geochemical data with 16S rRNA data from the microbial communities in sediments surrounding layers containing siderite minerals. Statistical data reveal the formation of three clusters of microbial communities based on taxonomical composition, key taxa among bacteria and archaea, and environmental parameters. Diversity and richness estimators decrease with sediment depth, with several similar prevailing clades located at the bottom of the core. Most of the taxa in the deep sediments could be associated with putative metabolisms involving organotrophic fermentation (Bathyarchaeia, Caldatribacteriota, and Chloroflexota). Various groups of methanogens (Methanoregulaceae, Methanosaetaceae, and Methanomassiliicoccales) and methanotrophic (Methanoperedenaceae) archaea are present in the sediment at variable relative abundances throughout the sampled depth. Based on the physicochemical characteristics of the sediment, carbon isotope analysis of carbonate minerals and DIC, and phylogenetic analysis of individual taxa and their metabolic potential, we present several models for subsurface siderite precipitation in Lake Baikal sediments.

2.
Microorganisms ; 11(7)2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37513037

RESUMEN

We analyzed the amplicons of the 16S rRNA genes and assembled metagenome-assembled genomes (MAGs) of the enrichment culture from the Fe-Mn layer to have an insight into the diversity and metabolic potential of microbial communities from sediments of two sites in the northern basin of Lake Baikal. Organotrophic Chloroflexota, Actionobacteriota, and Acidobacteriota, as well as aerobic and anaerobic participants of the methane cycle (Methylococcales and Methylomirabilota, respectively), dominated the communities of the surface layers. With depth, one of the cores showed a decrease in the proportion of the Chloroflexota and Acidobacteriota members and a substantial increase in the sequences of the phylum Firmicutes. The proportion of the Desulfobacteriota and Thermodesulfovibronia (Nitrospirota) increased in another core. The composition of archaeal communities was similar between the investigated sites and differed in depth. Members of ammonia-oxidizing archaea (Nitrososphaeria) predominated in the surface sediments, with an increase in anaerobic methanotrophs (Methanoperedenaceae) and organoheterotrophs (Bathyarchaeia) in deep sediments. Among the 37 MAGs, Gammaproteobacteria, Desulfobacteriota, and Methylomirabilota were the most common in the microbial community. Metagenome sequencing revealed the assembled genomes genes for N, S, and CH4 metabolism for carbon fixation, and genes encoding Fe and Mn pathways, indicating the likely coexistence of the biogeochemical cycle of various elements and creating certain conditions for the development of taxonomically and functionally diverse microbial communities.

3.
Indian J Microbiol ; 57(4): 422-426, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29151643

RESUMEN

A strain of Nostoc punctiforme was isolated from the bottom sediments of the oil seep at Gorevoy Utes (Central Baikal) at a depth of 890 m. The Baikal strain is highly similar (98-99%) to the N. punctiforme CCAP 1453/9 strain and the typical N. punctiforme PCC 73103 strain isolated from soil ecotopes. Based on the analysis of functional genes and mass spectrometry data, we determined that the strain can produce bioactive peptides and polyketides, but does not produce known cyanobacterial toxins, saxitoxin or its analogs, or microcystins. The peptides aeruginosinamide, aeruginosin 606, aeruginosin 98-A, kasumigamide C, and microginin 91-D were recorded in the metabolic profile of the strain. The major ion found in the MALDI mass spectrum is most likely to be an ion of a polyketide substance with unknown function.

4.
Springerplus ; 3: 621, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25392791

RESUMEN

BACKGROUND: Rhodococci are bacteria able to degrade a wide range of hydrocarbons, including the alkanes present in crude oil, due to alk genes in their genomes. FINDINGS: Genome sequencing of DNA from Rhodococcus erythropolis strain 4 (obtained from a deep-water bitumen mound) revealed four alk genes, and the predicted amino acid sequences coded by these genes were highly conserved, having sections up to 11 amino acid residues. CONCLUSIONS: Obtained four genes from Rhodococcus erythropolis were similar to corresponding genes from other bacteria collected from other environments, including marine sources. This indicated a large-scale horizontal alk gene transfer between bacteria from different subgenera.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA