Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Hum Reprod Open ; 2024(3): hoae048, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39185250

RESUMEN

STUDY QUESTION: What changes occur in the endometrium during aging, and do they impact fertility? SUMMARY ANSWER: Both the transcriptome and cellular composition of endometrial samples from women of advanced maternal age (AMA) are significantly different from that of samples from young women, suggesting specific changes in epithelial cells that may affect endometrial receptivity. WHAT IS KNOWN ALREADY: Aging is associated with the accumulation of senescent cells in aging tissues. Reproductive aging is mostly attributed to the decline in ovarian reserve and oocyte quality, whereas the endometrium is a unique complex tissue that is monthly renewed under hormonal regulation. Several clinical studies have reported lower implantation and pregnancy rates in oocyte recipients of AMA during IVF. Molecular studies have indicated the presence of specific mutations within the epithelial cells of AMA endometrium, along with altered gene expression of bulk endometrial tissue. STUDY DESIGN SIZE DURATION: Endometrial transcriptome profiling was performed for 44 women undergoing HRT during the assessment of endometrial receptivity before IVF. Patients younger than 28 years were considered as the young maternal age (YMA) group (age 23-27 years) and women older than 45 years were considered as the AMA group (age 47-50 years). Endometrial biopsies were obtained on Day 5 of progesterone treatment and RNA was extracted. All endometrial samples were evaluated as being receptive based on the expression of 68 common endometrial receptivity markers. Endometrial samples from another 24 women classified into four age groups (YMA, intermediate age group 1 (IMA1, age 29-35), intermediate age group 2 (IMA2, age 36-44), and AMA) were obtained in the mid-secretory stage of a natural cycle (NC) and used for validation studies across the reproductive lifespan. PARTICIPANTS/MATERIALS SETTING METHODS: A total of 24 HRT samples (12 YMA and 12 AMA) were subject to RNA sequencing (RNA-seq) and differential gene expression analysis, 20 samples (10 YMA and 10 AMA) were used for qPCR validation, and 24 NC samples (6 YMA, 6 IMA1, 6 IMA2 and 6AMA) were used for RNA-seq validation of AMA genes across the woman's reproductive lifespan. Immunohistochemistry (IHC) was used to confirm some expression changes at the protein level. Computational deconvolution using six endometrial cell type-specific transcriptomic profiles was conducted to compare the cellular composition between the groups. MAIN RESULTS AND THE ROLE OF CHANCE: Comparisons between YMA and AMA samples identified a lower proportion of receptive endometria in the AMA group (P = 0.007). Gene expression profiling identified 491 differentially expressed age-sensitive genes (P adj < 0.05) that revealed the effects of age on endometrial epithelial growth and receptivity, likely contributing to decreased reproductive performance. Our results indicate that changes in the expression of the cellular senescence marker p16INK4a and genes associated with metabolism, inflammation, and hormone response are involved in endometrial aging. Importantly, we demonstrate that the proportion of multi-ciliated cells, as discovered based on RNA-seq data deconvolution and tissue IHC results, is affected by endometrial aging, and propose a putative onset of age-related changes. Furthermore, we propose that aging has an impact on the transcriptomic profile of endometrial tissue in the context of endometrial receptivity. LARGE SCALE DATA: The raw sequencing data reported in this article are deposited at the Gene Expression Omnibus under accession code GSE236128. LIMITATIONS REASONS FOR CAUTION: This retrospective study identified changes in the endometrium of patients undergoing hormonal replacement and validated these changes using samples obtained during a NC. However, future studies must clarify the importance of these findings on the clinical outcomes of assisted reproduction. WIDER IMPLICATIONS OF THE FINDINGS: The findings reported in this study have important implications for devising future strategies aimed at improving fertility management in women of advanced reproductive age. STUDY FUNDING/COMPETING INTERESTS: This research was funded by the Estonian Research Council (grant no. PRG1076), Horizon 2020 innovation grant (ERIN, grant no. EU952516), Enterprise Estonia (grant no. EU48695), MSCA-RISE-2020 project TRENDO (grant no. 101008193), EU 874867 project HUTER, the Horizon Europe NESTOR grant (grant no. 101120075) of the European Commission, the EVA specialty program (grant no. KP111513) of the Maastricht University Medical Center (MUMC+), MICIU/AEI/10.13039/501100011033 and FEDER, EU projects Endo-Map (grant no. PID2021-12728OB-100), ROSY (grant no. CNS2022-135999), and the National Science Fund of Bulgaria (grant no. KII-06 H31/2). The authors declare no competing interests.

2.
Hum Reprod Update ; 29(6): 773-793, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37468438

RESUMEN

BACKGROUND: Modern lifestyle has led to an increase in the age at conception. Advanced age is one of the critical risk factors for female-related infertility. It is well known that maternal age positively correlates with the deterioration of oocyte quality and chromosomal abnormalities in oocytes and embryos. The effect of age on endometrial function may be an equally important factor influencing implantation rate, pregnancy rate, and overall female fertility. However, there are only a few published studies on this topic, suggesting that this area has been under-explored. Improving our knowledge of endometrial aging from the biological (cellular, molecular, histological) and clinical perspectives would broaden our understanding of the risks of age-related female infertility. OBJECTIVE AND RATIONALE: The objective of this narrative review is to critically evaluate the existing literature on endometrial aging with a focus on synthesizing the evidence for the impact of endometrial aging on conception and pregnancy success. This would provide insights into existing gaps in the clinical application of research findings and promote the development of treatment options in this field. SEARCH METHODS: The review was prepared using PubMed (Medline) until February 2023 with the keywords such as 'endometrial aging', 'receptivity', 'decidualization', 'hormone', 'senescence', 'cellular', 'molecular', 'methylation', 'biological age', 'epigenetic', 'oocyte recipient', 'oocyte donation', 'embryo transfer', and 'pregnancy rate'. Articles in a language other than English were excluded. OUTCOMES: In the aging endometrium, alterations occur at the molecular, cellular, and histological levels suggesting that aging has a negative effect on endometrial biology and may impair endometrial receptivity. Additionally, advanced age influences cellular senescence, which plays an important role during the initial phase of implantation and is a major obstacle in the development of suitable senolytic agents for endometrial aging. Aging is also accountable for chronic conditions associated with inflammaging, which eventually can lead to increased pro-inflammation and tissue fibrosis. Furthermore, advanced age influences epigenetic regulation in the endometrium, thus altering the relation between its epigenetic and chronological age. The studies in oocyte donation cycles to determine the effect of age on endometrial receptivity with respect to the rates of implantation, clinical pregnancy, miscarriage, and live birth have revealed contradictory inferences indicating the need for future research on the mechanisms and corresponding causal effects of women's age on endometrial receptivity. WIDER IMPLICATIONS: Increasing age can be accountable for female infertility and IVF failures. Based on the complied observations and synthesized conclusions in this review, advanced age has been shown to have a negative impact on endometrial functioning. This information can provide recommendations for future research focusing on molecular mechanisms of age-related cellular senescence, cellular composition, and transcriptomic changes in relation to endometrial aging. Additionally, further prospective research is needed to explore newly emerging therapeutic options, such as the senolytic agents that can target endometrial aging without affecting decidualization. Moreover, clinical trial protocols, focusing on oocyte donation cycles, would be beneficial in understanding the direct clinical implications of endometrial aging on pregnancy outcomes.


Asunto(s)
Infertilidad Femenina , Embarazo , Femenino , Humanos , Epigénesis Genética , Senoterapéuticos , Resultado del Embarazo , Índice de Embarazo , Implantación del Embrión/fisiología , Endometrio/fisiología
3.
Sci Rep ; 11(1): 16287, 2021 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-34381107

RESUMEN

Hyperandrogenic women with PCOS show disrupted decidualization (DE) and placentation. Dihydrotestosterone (DHT) is reported to enhance DE in non-PCOS endometrial stromal cells (eSCCtrl); however, this has not been assessed in PCOS cells (eSCPCOS). Therefore, we studied the transcriptome profile of non-decidualized (non-DE) and DE eSCs from women with PCOS and Ctrl in response to short-term estradiol (E2) and/or progesterone (P4) exposure with/without (±) DHT. The non-DE eSCs were subjected to E2 ± DHT treatment, whereas the DE (0.5 mM 8-Br-cAMP, 96 h) eSCs were post-treated with E2 and P4 ± DHT, and RNA-sequenced. Validation was performed by immunofluorescence and immunohistochemistry. The results showed that, regardless of treatment, the PCOS and Ctrl samples clustered separately. The comparison of DE vs. non-DE eSCPCOS without DHT revealed PCOS-specific differentially expressed genes (DEGs) involved in mitochondrial function and progesterone signaling. When further adding DHT, we detected altered responses for lysophosphatidic acid (LPA), inflammation, and androgen signaling. Overall, the results highlight an underlying defect in decidualized eSCPCOS, present with or without DHT exposure, and possibly linked to the altered pregnancy outcomes. We also report novel factors which elucidate the mechanisms of endometrial dysfunction in PCOS.


Asunto(s)
Andrógenos/metabolismo , Endometrio/metabolismo , Síndrome del Ovario Poliquístico/metabolismo , Células del Estroma/metabolismo , Adulto , Dihidrotestosterona/metabolismo , Estradiol/metabolismo , Femenino , Humanos , Embarazo , Progesterona/metabolismo , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA