Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Gels ; 10(4)2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38667697

RESUMEN

Repairing damaged tissue caused by bacterial infection poses a significant challenge. Traditional antibacterial hydrogels typically incorporate various components such as metal antimicrobials, inorganic antimicrobials, organic antimicrobials, and more. However, drawbacks such as the emergence of multi-drug resistance to antibiotics, the low antibacterial efficacy of natural agents, and the potential cytotoxicity associated with metal antibacterial nanoparticles in hydrogels hindered their broader clinical application. In this study, we successfully developed imidazolium poly(ionic liquids) (PILs) polymer microspheres (APMs) through emulsion polymerization. These APMs exhibited notable antibacterial effectiveness and demonstrated minimal cell toxicity. Subsequently, we integrated the APMs into a gelatin methacryloyl (GelMA)-polyethylene glycol (PEG) hydrogel. This composite hydrogel not only showcased strong antibacterial and anti-inflammatory properties but also facilitated the migration of human skin fibroblasts (HSF) and human umbilical vein endothelial cells (HUVECs) and promoted osteogenic differentiation in vitro.

2.
J Biomater Sci Polym Ed ; 29(17): 2106-2123, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30141743

RESUMEN

Catheters are widely used and play an important role in medicine. However, catheter-associated infection is prevalent even under stringent sterile conditions. Biofilms are formed when bacteria populate the surfaces of catheters. This makes the biofilm resistant to antibiotics. Hence, it is imperative for there to be an inherently antifouling and anti-bacterial catheter to mitigate the formation of biofilm. This paper aims to outline the synthesis of non-leachable anti-biofilm and anti-bacterial cationic film coatings through direct polymerization using supplemental activator and reducing agent surface initiated atom transfer radical polymerization (SARA SI-ATRP). Three crosslinked cationic coatings comprising of Diallyl dimethyl ammonium chloride (DADMAC), or ε-poly-L-lysine HCl methacrylic acid (EPL-MA) together with a crosslinker (polyethylene glycol dimethacrylate, PEGDMA) were investigated. These non-leachable covalently linked coatings with DADMAC can achieve more than 2 log reduction (99.0%) with Methicillin-resistant Staphylococcus aureus (MRSA) and 1.25 log reduction (94.4%) with Vancomycin resistant Enterococcus (VRE) in in vitro studies.


Asunto(s)
Antibacterianos/química , Biopelículas , Catéteres , Materiales Biocompatibles Revestidos/química , Hidrogeles/química , Compuestos Alílicos/química , Reactivos de Enlaces Cruzados/química , Dimetilpolisiloxanos/química , Metacrilatos/química , Staphylococcus aureus Resistente a Meticilina , Pruebas de Sensibilidad Microbiana , Polietilenglicoles/química , Polilisina/química , Polimerizacion , Ácidos Polimetacrílicos/química , Compuestos de Amonio Cuaternario/química , Propiedades de Superficie , Enterococos Resistentes a la Vancomicina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA