Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 400
Filtrar
1.
Proc Biol Sci ; 291(2030): 20240823, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39255840

RESUMEN

Most deep-ocean life relies on organic carbon from the surface ocean. While settling primary production rapidly attenuates in the water column, pulses of organic material can be quickly transported to depth in the form of food falls. One example of fresh material that can reach great depths across the tropical Atlantic Ocean and Caribbean Sea is the pelagic macroalgae Sargassum. However, little is known about the deep-ocean organisms able to use this food source. Here, we encountered the isopod Bathyopsurus nybelini at depths 5002-6288 m in the Puerto Rico Trench and Mid-Cayman Spreading Center using the Deep Submergence Vehicle Alvin. In most of the 32 observations, the isopods carried fronds of Sargassum. Through an integrative suite of morphological, DNA sequencing, and microbiological approaches, we show that this species is adapted to feed on Sargassum by using a specialized swimming stroke, having serrated and grinding mouthparts, and containing a gut microbiome that provides a dietary contribution through the degradation of macroalgal polysaccharides and fixing nitrogen. The isopod's physiological, morphological, and ecological adaptations demonstrate that vertical deposition of Sargassum is a direct trophic link between the surface and deep ocean and that some deep-sea organisms are poised to use this material.


Asunto(s)
Isópodos , Sargassum , Sargassum/fisiología , Isópodos/fisiología , Animales , Océano Atlántico , Puerto Rico , Conducta Alimentaria , Microbioma Gastrointestinal , Cadena Alimentaria , Región del Caribe
2.
Chemistry ; : e202402310, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39222484

RESUMEN

Heme enzymes play a central role in a medley of reactivities within a wide variety of crucial biological systems. Their active sites are highly decorated with pivotal evolutionarily optimized non-covalent interactions that precisely choreograph their biological functionalities with specific regio-, stereo-, and chemo-selectivities. Gaining a clear comprehension of how such weak interactions within the active sites control reactivity offers powerful information to be implemented into the design of future therapeutic agents that target these heme enzymes. To shed light on such critical details pertaining to tryptophan dioxygenating heme enzymes, this study investigates the indole dioxygenation reactivities of Lewis acid-activated heme superoxo model systems, wherein an unprecedented kinetic behavior is revealed. In that, the activated heme superoxo adduct is observed to undergo indole dioxygenation with the intermediacy of a non-covalently organized precursor complex, which forms prior to the rate-limiting step of the overall reaction landscape. Spectroscopic and theoretical characterization of this precursor complex draws close parallels to the ternary complex of heme dioxygenases, which has been postulated to be of crucial importance for successful 2,3-dioxygenative cleavage of indole moieties.

4.
J Biomed Opt ; 29(Suppl 3): S33306, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39247899

RESUMEN

Significance: The arterial input function (AIF) plays a crucial role in correcting the time-dependent concentration of the contrast agent within the arterial system, accounting for variations in agent injection parameters (speed, timing, etc.) across patients. Understanding the significance of the AIF can enhance the accuracy of tissue vascular perfusion assessment through indocyanine green-based dynamic contrast-enhanced fluorescence imaging (DCE-FI). Aim: We evaluate the impact of the AIF on perfusion assessment through DCE-FI. Approach: A total of 144 AIFs were acquired from 110 patients using a pulse dye densitometer. Simulation and patient intraoperative imaging were conducted to validate the significance of AIF for perfusion assessment based on kinetic parameters extracted from fluorescence images before and after AIF correction. The kinetic model accuracy was evaluated by assessing the variability of kinetic parameters using individual AIF versus population-based AIF. Results: Individual AIF can reduce the variability in kinetic parameters, and population-based AIF can potentially replace individual AIF for estimating wash-out rate ( k ep ), maximum intensity ( I max ), ingress slope with lower differences compared with those in estimating blood flow, volume transfer constant ( K trans ), and time to peak. Conclusions: Individual AIF can provide the most accurate perfusion assessment compared with assessment without AIF or based on population-based AIF correction.


Asunto(s)
Verde de Indocianina , Imagen Óptica , Humanos , Imagen Óptica/métodos , Verde de Indocianina/química , Verde de Indocianina/farmacocinética , Femenino , Persona de Mediana Edad , Anciano , Masculino , Medios de Contraste/química , Adulto , Arterias/diagnóstico por imagen , Imagen de Perfusión/métodos , Simulación por Computador
5.
Environ Microbiol ; 26(8): e16689, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39168489

RESUMEN

In oligotrophic oceans, the smallest eukaryotic phytoplankton are both significant primary producers and predators of abundant bacteria such as Prochlorococcus. However, the drivers and consequences of community dynamics among these diverse protists are not well understood. Here, we investigated how trophic strategies along the autotrophy-mixotrophy spectrum vary in importance over time and across depths at Station ALOHA in the North Pacific Subtropical Gyre. We combined picoeukaryote community composition from a 28-month time-series with traits of diverse phytoplankton isolates from the same location, to examine trophic strategies across 13 operational taxonomic units and 8 taxonomic classes. We found that autotrophs and slower-grazing mixotrophs tended to prevail deeper in the photic zone, while the most voracious mixotrophs were relatively abundant near the surface. Within the mixed layer, there was greater phagotrophy when conditions were most stratified and when Chl a concentrations were lowest, although the greatest temporal variation in trophic strategy occurred at intermediate depths (45-100 m). Dynamics at this site are consistent with previously described spatial patterns of trophic strategies. The success of relatively phagotrophic phytoplankton at shallower depths in the most stratified waters suggests that phagotrophy is a competitive strategy for acquiring nutrients when energy from light is plentiful.


Asunto(s)
Fitoplancton , Agua de Mar , Fitoplancton/clasificación , Océano Pacífico , Agua de Mar/microbiología , Cadena Alimentaria
6.
Vet Surg ; 53(6): 1052-1061, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39088191

RESUMEN

OBJECTIVE: To compare the efficacy and clinical outcomes of computed tomography (CT)-based virtual surgical planning (VSP) and a three-dimensional (3D)-printed, patient-specific reduction system to conventional indirect reduction techniques for diaphyseal tibial fractures stabilized using minimally invasive plate osteosynthesis (MIPO) in dogs. STUDY DESIGN: A prospective clinical study with a historic control cohort. SAMPLE POPULATION: Dogs undergoing MIPO stabilization of diaphyseal tibial fractures using a custom 3D-printed reduction system (3D-MIPO; n = 15) or conventional indirect reduction techniques (c-MIPO; n = 14). METHODS: Dogs were prospectively enrolled to the 3D-MIPO group and CT scans were used to design and fabricate a custom 3D-printed reduction system to facilitate MIPO. Medical records were searched to identify dogs for the c-MIPO group. Pre-, intra- and postoperative parameters were compared between groups. RESULTS: The duration from presentation until surgery was 23 h longer in the 3D-MIPO group (p = .002). Fewer intraoperative fluoroscopic images were acquired (p < .001) and mean surgical duration was 34 min shorter in the 3D-MIPO group (p = .014). Median postoperative tibial length, frontal alignment, and sagittal alignment were within 4 mm, 3° and 3°, respectively, of the contralateral tibia in both groups and did not differ between reduction groups (p > .1). Postoperative complications occurred in 27% and 14% of fractures in the 3D-MIPO and c-MIPO groups, respectively. CONCLUSION: Both reduction methods yielded comparable results. Although the preoperative planning and guide preparation was time consuming, surgery times were shorter and fluoroscopy use was less in the 3D-MIPO group. CLINICAL SIGNIFICANCE: VSP and the custom 3D-printed reduction system facilitated efficient MIPO.


Asunto(s)
Placas Óseas , Fijación Interna de Fracturas , Impresión Tridimensional , Fracturas de la Tibia , Animales , Perros/cirugía , Perros/lesiones , Fijación Interna de Fracturas/veterinaria , Fijación Interna de Fracturas/métodos , Fijación Interna de Fracturas/instrumentación , Fracturas de la Tibia/cirugía , Fracturas de la Tibia/veterinaria , Fracturas de la Tibia/diagnóstico por imagen , Placas Óseas/veterinaria , Masculino , Femenino , Estudios de Casos y Controles , Estudios Prospectivos , Tomografía Computarizada por Rayos X/veterinaria , Procedimientos Quirúrgicos Mínimamente Invasivos/veterinaria , Procedimientos Quirúrgicos Mínimamente Invasivos/métodos , Enfermedades de los Perros/cirugía , Cirugía Asistida por Computador/veterinaria , Cirugía Asistida por Computador/métodos
7.
Andrology ; 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39092870

RESUMEN

Novel male contraceptives have been in development for well over half a century, and despite a robust predicted global market for new methods, funding for research and development has been extremely limited. While the pharmaceutical industry previously supported male contraceptive research and development, industry partners are only spectators in the current space, awaiting a product that has been de-risked by the public sector before re-entering the field. Current male contraceptive development efforts are thus primarily funded by nonprofit, non-governmental, and government agencies who also act as the primary advocates for the field. Specific organizations include the International Consortium on Male Contraception, the Population Council, the Male Contraceptive Initiative, the World Health Organization, and the US National Institutes of Health. The funding provided by these public agencies, alongside their social and policy-based advocacy efforts such as market research, public education, and calls to action have kept the male contraceptive product development space afloat, resulting in a pipeline of potential products advancing towards market approval. However, as these products mature into more expensive clinical stages of development, they continue to face significant funding challenges, which many programs may not overcome. To fully realize the benefits of novel male contraceptive options, it is incumbent on philanthropic entities, impact investors, venture capital, and/or the pharmaceutical sector to provide significant and timely support for male contraceptive research and development.

8.
Cureus ; 16(7): e64535, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39144886

RESUMEN

While peripheral nerve schwannomas have a relatively low incidence, schwannomatosis, the condition in which one forms multiple recurring schwannomas, is an even rarer phenomenon and can be hard to detect given its ability to mimic other conditions. We report a case of a 35-year-old male who presented with a mass in his left wrist and forearm, volar pain in his forearm, and numbness in his fingers. Magnetic resonance imaging (MRI) revealed a bilobed heterogeneous neural sheath tumor in the distal left ulnar nerve. The tumor was resected including extensive internal neurolysis using a Zeiss operative microscope. Post-operative biopsy confirmed an encapsulated schwannoma. The patient did well initially but developed worsening pain in his forearm and weakness. He had persistent paresthesias in the ulnar nerve distribution. He underwent a repeat MRI almost one year later, which showed thickening of the ulnar nerve proximal to the area of resection with an 8.5 mm hyperintense nodule. The patient underwent a subsequent resection with extensive neurolysis, which confirmed that the mass was a benign non-invasive schwannoma. At six weeks post-surgery, the patient's forearm pain was significantly improved and his range of motion returned to baseline. Our case demonstrates the importance of post-operative follow-up in schwannomas with appropriate imaging if symptoms persist or recur.

9.
mSystems ; 9(8): e0077024, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-38980051

RESUMEN

Microorganisms grow despite imbalances in the availability of nutrients and energy. The biochemical and elemental adjustments that bacteria employ to sustain growth when these resources are suboptimal are not well understood. We assessed how Pseudomonas putida KT2440 adjusts its physiology at differing dilution rates (to approximate growth rates) in response to carbon (C), nitrogen (N), and phosphorus (P) stress using chemostats. Cellular elemental and biomolecular pools were variable in response to different limiting resources at a slow dilution rate of 0.12 h-1, but these pools were more similar across treatments at a faster rate of 0.48 h-1. At slow dilution rates, limitation by P and C appeared to alter cell growth efficiencies as reflected by changes in cellular C quotas and rates of oxygen consumption, both of which were highest under P- and lowest under C- stress. Underlying these phenotypic changes was differential gene expression of terminal oxidases used for ATP generation that allows for increased energy generation efficiency. In all treatments under fast dilution rates, KT2440 formed aggregates and biofilms, a physiological response that hindered an accurate assessment of growth rate, but which could serve as a mechanism that allows cells to remain in conditions where growth is favorable. Our findings highlight the ways that microorganisms dynamically adjust their physiology under different resource supply conditions, with distinct mechanisms depending on the limiting resource at slow growth and convergence toward an aggregative phenotype with similar compositions under conditions that attempt to force fast growth. IMPORTANCE: All organisms experience suboptimal growth conditions due to low nutrient and energy availability. Their ability to survive and reproduce under such conditions determines their evolutionary fitness. By imposing suboptimal resource ratios under different dilution rates on the model organism Pseudomonas putida KT2440, we show that this bacterium dynamically adjusts its elemental composition, morphology, pools of biomolecules, and levels of gene expression. By examining the ability of bacteria to respond to C:N:P imbalance, we can begin to understand how stoichiometric flexibility manifests at the cellular level and impacts the flow of energy and elements through ecosystems.


Asunto(s)
Pseudomonas putida , Pseudomonas putida/metabolismo , Pseudomonas putida/fisiología , Nitrógeno/metabolismo , Carbono/metabolismo , Fósforo/metabolismo , Regulación Bacteriana de la Expresión Génica , Biopelículas/crecimiento & desarrollo , Estrés Fisiológico/fisiología
10.
Orthopedics ; 47(4): e211-e213, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39038106

RESUMEN

Ulnar-shortening osteotomy is a reliable solution to treat ulnar impaction syndrome, but it has a significant rate of nonunion as a known complication. Generally nonunion after the procedure is attributed to noninfectious causes. When infections happen, they follow the microbiological trends of nonunions elsewhere in the body. We present a case of ulnar-shortening osteotomy using an oblique-cut osteotomy system that resulted in septic nonunion. At the time of revision surgery, Cutibacterium acnes and Staphylococcus hominis were isolated from the osteotomy site. The patient was successfully treated using intravenous antibiotics and the two-stage Masquelet technique and eventually went on to bony union. As C acnes is rarely encountered in this context, this report highlights the need to consider all possible pathogens in the workup of a potentially septic nonunion. Surgeons should consider bacteria such as C acnes that require prolonged incubation for isolation from cultures, which may not be part of many institutions' usual protocol. [Orthopedics. 2024;47(4):e211-e213.].


Asunto(s)
Antibacterianos , Osteotomía , Humanos , Osteotomía/efectos adversos , Antibacterianos/uso terapéutico , Cúbito/cirugía , Infecciones por Bacterias Grampositivas/microbiología , Infecciones por Bacterias Grampositivas/diagnóstico , Fracturas no Consolidadas/cirugía , Fracturas no Consolidadas/microbiología , Masculino , Infección de la Herida Quirúrgica/microbiología , Infección de la Herida Quirúrgica/tratamiento farmacológico , Infección de la Herida Quirúrgica/diagnóstico , Infección de la Herida Quirúrgica/etiología , Femenino , Reoperación , Adulto , Propionibacteriaceae/aislamiento & purificación
11.
Macromol Rapid Commun ; : e2400460, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39047164

RESUMEN

Catalyst-free, radical-based reactive processing is used to transform low-density polyethylene (LDPE) into polyethylene covalent adaptable networks (PE CANs) using a dialkylamino disulfide crosslinker, BiTEMPS methacrylate (BTMA). Two versions of BTMA are used, BTMA-S2, with nearly exclusively disulfide bridges, and BTMA-Sn, with a mixture of oligosulfide bridges, to produce S2 PE CAN and Sn PE CAN, respectively. The two PE CANs exhibit identical crosslink densities, but the S2 PE CAN manifests faster stress relaxation, with average relaxation times ∼4.5 times shorter than those of Sn PE CAN over a 130 to 160 °C temperature range. The more rapid dynamics of the S2 PE CAN translate into a shorter compression-molding reprocessing time at 160 °C of only 5 min (vs 30 min for the Sn PE CAN) to achieve full recovery of crosslink density. Both PE CANs are melt-extrudable and exhibit full recovery within experimental uncertainty of crosslink density after extrusion. Both PE CANs are self-healable, with a crack fully repaired and the original tensile properties restored after 30 min for the S2 PE CAN or 60 min for the Sn PE CAN at a temperature slightly above the LDPE melting point and without the assistance of external forces.

12.
Macromol Rapid Commun ; : e2400303, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38991017

RESUMEN

One method to improve the properties of covalent adaptable networks (CANs) is to reinforce them with a fraction of permanent cross-links without sacrificing their (re)processability. Here, a simple method to synthesize poly(n-hexyl methacrylate) (PHMA) and poly(n-lauryl methacrylate) (PLMA) networks containing static dialkyl disulfide cross-links (utilizing bis(2-methacryloyl)oxyethyl disulfide, or DSDMA, as a permanent cross-linker) and dynamic dialkylamino sulfur-sulfur cross-links (utilizing BiTEMPS methacrylate as a dissociative dynamic covalent cross-linker) is presented. The robustness and (re)processability of the CANs are demonstrated, including the full recovery of cross-link density after recycling. The authors also investigate the effect of static cross-link content on the stress relaxation responses of the CANs with and without percolated, static cross-links. As PHMA and PLMA have very different activation energies of their respective cooperative segmental mobilities, it is shown that the dissociative CANs without percolated, static cross-links have activation energies of stress relaxation that are dominated by the dissociation of BiTEMPS methacrylate cross-links rather than by the cooperative relaxations of backbone segments, i.e., the alpha relaxation. In CANs with percolated, static cross-links, the segmental relaxation of side chains, i.e., the beta relaxation, is critical in allowing for large-scale stress relaxation and governs their activation energies of stress relaxation.

13.
bioRxiv ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38948799

RESUMEN

During fertilization, mammalian sperm undergo a winnowing selection process that reduces the candidate pool of potential fertilizers from ~106-1011 cells to 101-102 cells (depending on the species). Classical sperm competition theory addresses the positive or 'stabilizing' selection that acts on sperm phenotypes within populations of organisms but does not strictly address the developmental consequences of sperm traits among individual organisms that are under purifying selection during fertilization. It is the latter that is of utmost concern for improving assisted reproductive technologies (ART) because 'low fitness' sperm may be inadvertently used for fertilization during interventions that rely heavily on artificial sperm selection, such as intracytoplasmic sperm injection (ICSI). Importantly, some form of sperm selection is used in nearly all forms of ART (e.g., differential centrifugation, swim-up, or hyaluronan binding assays, etc.). To date, there is no unifying quantitative framework (i.e., theory of sperm selection) that synthesizes causal mechanisms of selection with observed natural variation in individual sperm traits. In this report, we reframe the physiological function of sperm as a collective diffusive search process and develop multi-scale computational models to explore the causal dynamics that constrain sperm 'fitness' during fertilization. Several experimentally useful concepts are developed, including a probabilistic measure of sperm 'fitness' as well as an information theoretic measure of the magnitude of sperm selection, each of which are assessed under systematic increases in microenvironmental selective pressure acting on sperm motility patterns.

14.
Vet Surg ; 53(6): 1039-1051, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38850094

RESUMEN

OBJECTIVE: To evaluate the efficacy of a three-dimensional (3D)-printed, patient-specific reduction system for aligning diaphyseal tibial fractures stabilized using minimally invasive plate osteosynthesis (MIPO). STUDY DESIGN: Prospective clinical trial. SAMPLE POPULATION: Fifteen client owned dogs. METHODS: Virtual 3D models of both pelvic limbs were created. Pin guides were designed to conform to the proximal and distal tibia. A reduction bridge was designed to align the pin guides based on the guides' spatial location. Guides were 3D printed, sterilized, and applied, in conjunction with transient application of a circular fixator, to facilitate indirect fracture realignment before plate application. Alignment of the stabilized tibiae was assessed using postoperative computed tomography scans. RESULTS: Mean duration required for virtual planning was 2.5 h and a mean of 50.7 h elapsed between presentation and surgery. Guide placement was accurate with minor median discrepancies in translation and frontal, sagittal, and axial plane positioning of 2.9 mm, 3.6°, 2.7°, and 6.8°, respectively. Application of the reduction system restored mean tibial length and frontal, sagittal, and axial alignment within 1.7 mm, 1.9°, 1.7°, and 4.5°, respectively, of the contralateral tibia. CONCLUSION: Design and fabrication of a 3D-printed, patient-specific fracture reduction system is feasible in a relevant clinical timeline. Intraoperative pin-guide placement was reasonably accurate with minor discrepancies compared to the virtual plan. Custom 3D-printed reduction system application facilitated near-anatomic or acceptable fracture reduction in all dogs. CLINICAL SIGNIFICANCE: Virtual planning and fabrication of a 3D-printing patient-specific fracture reduction system is practical and facilitated acceptable, if not near-anatomic, fracture alignment during MIPO.


Asunto(s)
Placas Óseas , Fijación Interna de Fracturas , Impresión Tridimensional , Fracturas de la Tibia , Animales , Perros/lesiones , Perros/cirugía , Fracturas de la Tibia/cirugía , Fracturas de la Tibia/veterinaria , Fijación Interna de Fracturas/veterinaria , Fijación Interna de Fracturas/métodos , Fijación Interna de Fracturas/instrumentación , Placas Óseas/veterinaria , Estudios Prospectivos , Masculino , Femenino , Procedimientos Quirúrgicos Mínimamente Invasivos/veterinaria , Procedimientos Quirúrgicos Mínimamente Invasivos/métodos , Procedimientos Quirúrgicos Mínimamente Invasivos/instrumentación
15.
Arch Suicide Res ; : 1-15, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38896466

RESUMEN

INTRODUCTION: Wildland firefighters are posited to have a higher suicide rate than general firefighters and the general population. However, the rates and risk factors of suicide among wildland firefighters is not fully understood. METHODS: For this preregistered study, 564 participants were recruited from Facebook to obtain a final sample of 246 participants with valid data who were current or former wildland firefighters in the United States. Participants completed online measures of suicidal ideation, history of suicidal behaviors, posttraumatic stress disorder (PTSD) symptoms, problematic alcohol use, and occupational exposure to suicide. RESULTS: In this sample, 22% of wildland firefighters reported a history of at least one suicide attempt, and 36.7% reported current suicidal ideation. PTSD symptoms, but not problematic alcohol use or exposure to suicide, were positively associated with suicidal ideation and a history of suicide attempts. Additionally, PTSD symptoms explained significantly more variance in suicidal ideation than depression symptoms alone. CONCLUSIONS: Wildland firefighters demonstrate rates of suicide attempts that exceed those of non-wildland firefighters and of the general population at large. In addition, PTSD symptoms may contribute to suicidal thoughts and behaviors (STB) in this population. This is the largest study of STB in wildland firefighters to date.

16.
Cell Death Dis ; 15(6): 387, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824145

RESUMEN

Obesity exacerbates tissue degeneration and compromises the integrity and reparative potential of mesenchymal stem/stromal cells (MSCs), but the underlying mechanisms have not been sufficiently elucidated. Mitochondria modulate the viability, plasticity, proliferative capacity, and differentiation potential of MSCs. We hypothesized that alterations in the 5-hydroxymethylcytosine (5hmC) profile of mitochondria-related genes may mediate obesity-driven dysfunction of human adipose-derived MSCs. MSCs were harvested from abdominal subcutaneous fat of obese and age/sex-matched non-obese subjects (n = 5 each). The 5hmC profile and expression of nuclear-encoded mitochondrial genes were examined by hydroxymethylated DNA immunoprecipitation sequencing (h MeDIP-seq) and mRNA-seq, respectively. MSC mitochondrial structure (electron microscopy) and function, metabolomics, proliferation, and neurogenic differentiation were evaluated in vitro, before and after epigenetic modulation. hMeDIP-seq identified 99 peaks of hyper-hydroxymethylation and 150 peaks of hypo-hydroxymethylation in nuclear-encoded mitochondrial genes from Obese- versus Non-obese-MSCs. Integrated hMeDIP-seq/mRNA-seq analysis identified a select group of overlapping (altered levels of both 5hmC and mRNA) nuclear-encoded mitochondrial genes involved in ATP production, redox activity, cell proliferation, migration, fatty acid metabolism, and neuronal development. Furthermore, Obese-MSCs exhibited decreased mitochondrial matrix density, membrane potential, and levels of fatty acid metabolites, increased superoxide production, and impaired neuronal differentiation, which improved with epigenetic modulation. Obesity elicits epigenetic changes in mitochondria-related genes in human adipose-derived MSCs, accompanied by structural and functional changes in their mitochondria and impaired fatty acid metabolism and neurogenic differentiation capacity. These observations may assist in developing novel therapies to preserve the potential of MSCs for tissue repair and regeneration in obese individuals.


Asunto(s)
Tejido Adiposo , Diferenciación Celular , Epigénesis Genética , Células Madre Mesenquimatosas , Mitocondrias , Obesidad , Humanos , Células Madre Mesenquimatosas/metabolismo , Obesidad/metabolismo , Obesidad/genética , Obesidad/patología , Mitocondrias/metabolismo , Tejido Adiposo/metabolismo , Diferenciación Celular/genética , Femenino , Masculino , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Adulto , Persona de Mediana Edad , Proliferación Celular
17.
J Clin Invest ; 134(12)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38941296

RESUMEN

Clear cell renal cell carcinoma (ccRCC) is an aggressive cancer driven by VHL loss and aberrant HIF-2α signaling. Identifying means to regulate HIF-2α thus has potential therapeutic benefit. Acetyl-CoA synthetase 2 (ACSS2) converts acetate to acetyl-CoA and is associated with poor patient prognosis in ccRCC. Here we tested the effects of ACSS2 on HIF-2α and cancer cell metabolism and growth in ccRCC models and clinical samples. ACSS2 inhibition reduced HIF-2α levels and suppressed ccRCC cell line growth in vitro, in vivo, and in cultures of primary ccRCC patient tumors. This treatment reduced glycolytic signaling, cholesterol metabolism, and mitochondrial integrity, all of which are consistent with loss of HIF-2α. Mechanistically, ACSS2 inhibition decreased chromatin accessibility and HIF-2α expression and stability. While HIF-2α protein levels are widely regulated through pVHL-dependent proteolytic degradation, we identify a potential pVHL-independent pathway of degradation via the E3 ligase MUL1. We show that MUL1 can directly interact with HIF-2α and that overexpression of MUL1 decreased HIF-2α levels in a manner partially dependent on ACSS2. These findings identify multiple mechanisms to regulate HIF-2α stability and ACSS2 inhibition as a strategy to complement HIF-2α-targeted therapies and deplete pathogenically stabilized HIF-2α.


Asunto(s)
Acetato CoA Ligasa , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Carcinoma de Células Renales , Regulación Neoplásica de la Expresión Génica , Neoplasias Renales , Transducción de Señal , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/genética , Humanos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Neoplasias Renales/genética , Línea Celular Tumoral , Acetato CoA Ligasa/metabolismo , Acetato CoA Ligasa/genética , Animales , Ratones , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética
18.
bioRxiv ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38746427

RESUMEN

Microfluidics devices are powerful tools for studying dynamic processes in live cells, especially when used in conjunction with light microscopy. There are many applications of microfluidics devices including recording dynamic cellular responses to small molecules or other chemical conditions in perfused media, monitoring cell migration in constrained spaces, or collecting media perfusate for the study of secreted compounds in response to experimental inputs/manipulations. Here we describe a configurable low-cost (channel-based) microfluidics platform for live-cell microscopy, intended to be useful for experiments that require more precision/flexibility than simple rubber spacers, but less precision than molded elastomer-based platforms. The materials are widely commercially available, low-cost, and device assembly takes only minutes.

19.
bioRxiv ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38712038

RESUMEN

Glucocerebrosidase (GCase) is implicated in both a rare, monogenic disorder (Gaucher disease, GD) and a common, multifactorial condition (Parkinson's disease); hence, it is an urgent therapeutic target. To identify correctors of severe protein misfolding and trafficking obstruction manifested by the pathogenic L444P-variant of GCase, we developed a suite of quantitative, high-throughput, cell-based assays. First, we labeled GCase with a small pro-luminescent HiBiT peptide reporter tag, enabling quantitation of protein stabilization in cells while faithfully maintaining target biology. TALEN-based gene editing allowed for stable integration of a single HiBiT-GBA1 transgene into an intragenic safe-harbor locus in GBA1-knockout H4 (neuroglioma) cells. This GD cell model was amenable to lead discovery via titration-based quantitative high-throughput screening and lead optimization via structure-activity relationships. A primary screen of 10,779 compounds from the NCATS bioactive collections identified 140 stabilizers of HiBiT-GCase-L444P, including both pharmacological chaperones (ambroxol and non-inhibitory chaperone NCGC326) and proteostasis regulators (panobinostat, trans-ISRIB, and pladienolide B). Two complementary high-content imaging-based assays were deployed to triage hits: the fluorescence-quenched substrate LysoFix-GBA captured functional lysosomal GCase activity, while an immunofluorescence assay featuring antibody hGCase-1/23 provided direct visualization of GCase lysosomal translocation. NCGC326 was active in both secondary assays and completely reversed pathological glucosylsphingosine accumulation. Finally, we tested the concept of combination therapy, by demonstrating synergistic actions of NCGC326 with proteostasis regulators in enhancing GCase-L444P levels. Looking forward, these physiologically-relevant assays can facilitate the identification, pharmacological validation, and medicinal chemistry optimization of new chemical matter targeting GCase, ultimately leading to a viable therapeutic for two protein-misfolding diseases.

20.
Dent Mater ; 40(8): 1128-1137, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38821837

RESUMEN

Hydrolytically and enzymatically-stable multi-acrylamides have been proposed to increase the long-term durability of dental adhesive interfaces as alternatives to methacrylates. The aim of this study was to investigate the mechanical and biochemical properties of experimental adhesives containing multi-functional acrylamides concerning collagen reinforcement and metalloproteinases (MMP) activity. Multi-functional acrylamides, TMAAEA (Tris[(2-methylaminoacryl) ethylamine) and DEBAAP (N,N-Diethyl-1,3-bis(acrylamido) propane), along with the commercially available DMAM (N,N-dimethylacrylamide) (monofunctional acrylamide) and HEMA (2-Hydroxyethyl methacrylate) (monofunctional methacrylate - control) were tested for stability against enzymatic hydrolysis by cholesterol esterase/pseudocholinesterase (PC/PCE) solutions for up to 30 days. Collagen-derived substrate and gelatin zymography were performed to examine the effect of the compounds on the biological activity of human recombinant and dentin-extracted gelatinases MMP-2 and MMP-9. In situ zymography was carried out by fluorescent collagen degradation combined with confocal microscopy analysis. Hydroxyproline content was measured in collagen derived from dentin extracts though reaction with Ehrlich's reagent p-dimethylaminobenzaldehyde (DMAB), generating a stable chromophore measured at 550 nm. Storage shear modulus of demineralized dentin discs treated with the tested compounds was measured by oscillatory rheometry, in order to investigate potential collagen reinforcement. FT-IR was performed to determine qualitative differences in collagen based on observed changes in amide bands. The results were analyzed by ANOVA/Tukey's test (α = 0.05). Multi-acrylamides survived 30 days of incubation in cholinesterase/pseudo-cholinesterase (PC/PCE) solutions, while HEMA showed approximately 70 % overall degradation. Incubation with multi-acrylamides reduced collagen degradation as evidenced by the reduced hydroxyproline levels and by the 30 % increase inshear storage modulus. Biochemical and zymography assays showed no noticeable inhibition of recombinant and extracted MMPs enzymatic activity. The infra-red spectroscopy results for multi-functional acrylamides treated samples demonstrated shifts of the amide II bonds and marked increase in intensity of the bands 1200 cm-1, which may indicate partial collagen denaturation and some degree of cross-linking of the compounds with collagen, respectively. The multi-acrylamides exhibited not only comparable mechanical properties but also demonstrated significantly enhanced biochemical stability when compared to the widely used methacrylate control. Clinical relevance: These findings highlight the potential of multi-acrylamides to increase the bonding stability to tissues and, ultimately, contribute to the longevity of dental restorations.


Asunto(s)
Acrilamidas , Colágeno , Ensayo de Materiales , Colágeno/química , Acrilamidas/química , Humanos , Recubrimientos Dentinarios/química , Dentina/química , Metacrilatos/química , Recubrimiento Dental Adhesivo , Microscopía Confocal , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA