Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39269815

RESUMEN

Monolayers of Ti3C2Tx MXene and bilayer structures formed by partially overlapping monolayer flakes exhibit opposite sensing responses to a large scope of molecular analytes. When exposed to reducing analytes, monolayer MXene flakes show increased electrical conductivity, i.e., an n-type behavior, while bilayer structures become less conductive, exhibiting a p-type behavior. On the contrary, both monolayers and bilayers show unidirectional sensing responses with increased resistivity when exposed to oxidizing analytes. The sensing responses of Ti3C2Tx monolayers and bilayers are dominated by entirely different mechanisms. The sensing behavior of MXene monolayers is dictated by the charge transfer from adsorbed molecules and the response direction is consistent with the donor/acceptor properties of the analyte and the intrinsic n-type character of Ti3C2Tx. In contrast, the bilayer MXene structures always show the same response regardless of the donor/acceptor character of the analyte, and the resistivity always increases because of the intercalation of molecules between the Ti3C2Tx layers. This study explains the sensing behavior of bulk MXene sensors based on multiflake assemblies, in which this intercalation mechanism results in universal increase in resistance that for many analytes is seemingly inconsistent with the n-type character of the material. By scaling MXene sensors down from multiflake to single-flake level, we disentangled the charge transfer and intercalation effects and unraveled their contributions. In particular, we show that the charge transfer has a much faster kinetics than the intercalation process. Finally, we demonstrate that the layer-dependent gas sensing properties of MXenes can be employed for the design of sensor devices with enhanced molecular recognition.

2.
Phys Chem Chem Phys ; 24(22): 14016-14021, 2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35638717

RESUMEN

X-ray photoemission spectroscopy (XPS) has been used to examine the interaction between Au and HfS3 at the Au/HfS3 interface. XPS measurements reveal dissociative chemisorption of O2, leading to the formation of an oxide of Hf at the surface of HfS3. This surface hafnium oxide, along with the weakly chemisorbed molecular species, such as O2 and H2O, are likely responsible for the observed p-type characteristics of HfS3 reported elsewhere. HfS3 devices exhibit n-type behaviour if measured in vacuum but turn p-type in air. Au thickness-dependent XPS measurements provide clear evidence of band bending as the S 2p and Hf 4f core-level peak binding energies for Au/HfS3 are found to be shifted to higher binding energies. This band bending implies formation of a Schottky-barrier at the Au/HfS3 interface, which explains the low measured charge carrier mobilities of HfS3-based devices. The transistor measurements presented herein also indicate the existence of a Schottky barrier, consistent with the XPS core-level binding energy shifts, and show that the bulk of HfS3 is n-type.

3.
ACS Nano ; 12(12): 12713-12720, 2018 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-30499656

RESUMEN

Quasi-one-dimensional (quasi-1D) materials enjoy growing interest due to their unusual physical properties and promise for miniature electronic devices. However, the mechanical exfoliation of quasi-1D materials into thin flakes and nanoribbons received considerably less attention from researchers than the exfoliation of conventional layered crystals. In this study, we investigated the micromechanical exfoliation of representative quasi-1D crystals, TiS3 whiskers, and demonstrate that they typically split into narrow nanoribbons with very smooth, straight edges and clear signatures of 1D TiS3 chains. Theoretical calculations show that the energies required for breaking weak interactions between the two-dimensional (2D) layers and between 1D chains within the layers are comparable and, in turn, are considerably lower than those required for breaking the covalent bonds within the chains. We also emulated macroscopic exfoliation experiments on the nanoscale by applying a local shear force to TiS3 crystals in different crystallographic directions using a tip of an atomic force microscopy (AFM) probe. In the AFM experiments, it was possible to slide the 2D TiS3 layers relative to each other as well as to remove selected 1D chains from the layers. We systematically studied the exfoliated TiS3 crystals by Raman spectroscopy and identified the Raman peaks whose spectral positions were most dependent on the crystals' thickness. These results could be used to distinguish between TiS3 crystals with thickness ranging from one to about seven monolayers. The conclusions established in this study for the exfoliated TiS3 crystals can be extended to a variety of transition metal trichalcogenide materials as well as other quasi-1D crystals. The possibility of exfoliation of TiS3 into narrow (few-nm wide) crystals with smooth edges could be important for the future realization of miniature device channels with reduced edge scattering of charge carriers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA