Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Antioxidants (Basel) ; 12(8)2023 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-37627525

RESUMEN

Superoxide is the primary active oxygen form produced in living organisms. Because of superoxide anion radical formation during epinephrine oxidation in alkaline medium, this system is offered in some works for antioxidant activity analysis, however, without enough physicochemical justification. Therefore, the task of developing reliable methods for analyzing the superoxide inhibition activity of various objects is very urgent. In this work, a kinetic model of epinephrine autoxidation in an alkaline medium in the presence of antioxidants of plant origin is proposed. The participation of chain reactions with long oxidation chains in this process is revealed. The limiting stage of the process is a one-electron reduction of oxygen by the anionic forms of the phenolic hydroxyls of epinephrine. The appearance of the absorption maximum at a wavelength of 347 nm during epinephrine autoxidation is associated with adrenolutin formation, which is confirmed by HPLC/UV/MS. No adduct formation between phenolic antioxidants and epinephrine oxidation products was found. The complex U-shaped character of epinephrine autoxidation rate dependence on the content of antioxidants in the reaction system was shown. The study of the kinetics of epinephrine autoxidation in the presence of an individual phenolic plant superoxide inhibitor, chlorogenic acid, was carried out for the first time. The inhibitory effect of yarrow, chamomile, and bur beggar-ticks plant extracts in the adrenaline system was examined.

2.
Polymers (Basel) ; 15(4)2023 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-36850310

RESUMEN

The structural features and antibacterial properties of polymer-porphyrin composites were investigated. Meso-substituted arylporphyrin 0.2-0.5 wt.% was immobilized in a polylactide matrix. The immobilization of porphyrin causes a bathochromic shift and splitting of the Soret band. This study of the morphology of the obtained composites demonstrated a uniform distribution of the meso-substituted arylporphyrin in the polylactide matrix. It was determined by the X-ray diffraction analysis that porphyrin does not affect the α-form of polylactide crystalline formations. However, its addition into the polymer somewhat reduces the melting point (by 1-2 °C) and the degree of crystallinity of polylactide (by 3-4%). The elastic characteristics of the resulting systems were determined by the ultrasonic method, and a decrease in the density of the samples with an increase of the arylporphyrin content was shown. According to the results of the biological test, the dark toxicity of the obtained composites against the microorganisms Staphylococcus aureus, Salmonella Typhimurium and Escherichia coli was shown. Immobilizates containing 0.4 and 0.5 wt.% porphyrin showed the best antibacterial effect. The antibacterial activity of the studied composites makes it possible to attribute the polylactide-porphyrin systems to promising materials in the field of medicine and bioengineering.

3.
Nanomaterials (Basel) ; 13(3)2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36770525

RESUMEN

Polymer films doped by different porphyrins, obtained by crystallization from the acetone solutions, differ in absorption and fluorescence spectra, which we attribute to the differences in the structuring and composition of the rotational isomers in the polymer chains. According to the infrared spectroscopy data, the crystallization of the films doped with tetraphenylporphyrin (TPP) proceeds in a mixture of α- and γ-phases with TGTG- and T3GT3G- conformations, respectively. Three bonds in the planar zigzag conformation ensures the contact of such segments with the active groups of the porphyrin macrocycle, significantly changing its electronic state. Structuring of the films in the presence of TPP leads to an increase in the low-voltage AC-conductivity and the registration of an intense Maxwell-Wagner polarization. An increased conductivity by an order of magnitude in TPP-doped films was also observed at high-voltage polarization. The introduction of TPP during the film formation promotes the displacement of the chemical attachment defects of "head-to-head" type in the monomeric units into the surface. This process is accompanied by a significant increase in the film surface roughness, which was registered by piezo-force microscopy. The latter method also revealed the appearance of hysteresis phenomena during the local piezoelectric coefficient d33 measurements.

4.
J Funct Biomater ; 13(1)2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35323223

RESUMEN

The comparison of the effect of porphyrins of natural and synthetic origin containing the same metal atom on the structure and properties of the semi-crystalline polymer matrix is of current concern. A large number of modifying additives and biodegradable polymers for biomedical purposes, composed of poly(-3-hydroxybutyrate)-porphyrin, are of particular interest because of the combination of their unique properties. The objective of this work are electrospun fibrous material based on poly(-3-hydroxybutyrate) (PHB), hemin (Hmi), and tetraphenylporphyrin with iron (Fe(TPP)Cl). The structure of these new materials was investigated by methods such as optical and scanning electron microscopy, X-ray diffraction analysis, Electron paramagnetic resonance method, and Differential scanning calorimetry. The properties of the electrospun materials were analyzed by mechanical and biological tests, and the wetting contact angle was measured. In this work, it was found that even small concentrations of porphyrin can increase the antimicrobial properties by 12 times, improve the physical and mechanical properties by at least 3.5 times, and vary hydrophobicity by at least 5%. At the same time, additives similar in the structure had an oppositely directed effect on the supramolecular structure, the composition of the crystalline, and the amorphous phases. The article considers assumptions about the nature of such differences due to the influence of Hmi and Fe(TPP)Cl) on the macromolecular and fibrous structure of PHB.

5.
Polymers (Basel) ; 14(3)2022 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-35160599

RESUMEN

The effect of small additions (1-5 wt.%) of tetraphenylporphyrin (TPP) and its complexes with Fe (III) and Sn (IV) on the structure and properties of ultrathin fibers based on poly(3-hydroxybutyrate) (PHB) has been studied. A comprehensive study of biopolymer compositions included X-ray diffraction (XRD), differential scanning calorimetry (DSC), spin probe electron paramagnetic resonance method (EPR), and scanning electron microscopy (SEM). It was demonstrated that the addition of these dopants to the PHB fibers modifies their morphology, crystallinity and segmental dynamics in the amorphous regions. The annealing at 140 °C affects crystallinity and molecular mobility in the amorphous regions of the fibers, however the observed changes exhibit multidirectional behavior, depending on the type of porphyrin and its concentration in the fiber. Fibers exposure to an aqueous medium at 70 °C causes a nonlinear change in the enthalpy of melting and challenging nature of a change of the molecular dynamics.

6.
Int J Mol Sci ; 24(1)2022 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-36613788

RESUMEN

A novel amphiphilic cationic chlorin e6 derivative was investigated as a promising photosensitizer for photodynamic therapy. Two cationic -N(CH3)3+ groups on the periphery of the macrocycle provide additional hydrophilization of the molecule and ensure its electrostatic binding to the mitochondrial membranes and bacterial cell walls. The presence of a hydrophobic phytol residue in the same molecule results in its increased affinity towards the phospholipid membranes while decreasing its stability towards aggregation in aqueous media. In organic media, this chlorin e6 derivative is characterized by a singlet oxygen quantum yield of 55%. Solubilization studies in different polymer- and surfactant-based supramolecular systems revealed the effective stabilization of this compound in a photoactive monomolecular form in micellar nonionic surfactant solutions, including Tween-80 and Cremophor EL. A novel cationic chlorin e6 derivative also demonstrates effective binding towards serum albumin, which enhances its bioavailability and promotes effective accumulation within the target tissues. Laser confocal scanning microscopy demonstrates the rapid intracellular accumulation and distribution of this compound throughout the cells. Together with low dark toxicity and a rather good photostability, this compound demonstrates significant phototoxicity against HeLa cells causing cellular damage most likely through reactive oxygen species generation. These results demonstrate a high potential of this derivative for application in photodynamic therapy.


Asunto(s)
Clorofilidas , Fotoquimioterapia , Porfirinas , Humanos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Células HeLa , Fotoquimioterapia/métodos , Porfirinas/farmacología , Porfirinas/química
7.
Polymers (Basel) ; 13(22)2021 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-34833324

RESUMEN

The creation of innovative fibrous materials based on biodegradable semicrystalline polymers and modifying additives is an urgent scientific problem. In particular, the development of biomedical materials based on molecular complexes and biopolymers with controlled properties is of great interest. The paper suggests an approach to modifying the structure and properties of the composite materials based on poly(3-hydroxybutyrate) (PHB) obtained by the electrospinning method using molecular complexes of hemin. The introduction of 1-5 wt. % of hemin has a significant effect on the supramolecular structure, morphology and properties of PHB-based fibers. Changes in the supramolecular structure intensified with the increasing hemin concentration. On the one hand, a decrease in the fraction of the crystalline phase by 8-10% was observed. At the same time, there is a decrease in the density of the amorphous phase by 15-70%. Moreover, the addition of hemin leads to an improvement in the strength characteristics of the material: the elongation at break increased by 1.5 times, and in the tensile strength, it increased by 3 times. The antimicrobial activity of the hemin-containing composite materials against Escherichia coli and Staphylococcus aureus was confirmed. The obtained materials are proposed to be used in the creation of composite systems for regenerative medicine.

8.
Free Radic Biol Med ; 143: 522-533, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31520768

RESUMEN

The mechanisms of binary catalyst therapy (BCT) and photodynamic therapy (PDT) are based on the formation of reactive oxygen species (ROS). This ROS formation results from specific chemical reactions. In BCT, light exposure does not necessarily initiate ROS formation and BCT application is not limited to regions of tissues that are accessible to illumination like photodynamic therapy (PDT). The principle of BCT is electron transition, resulting in the interaction of a transition metal complex (catalyst) and substrate molecule. MnIII- tetraphenylporphyrin chloride (MnClTPP) in combination with an ascorbic acid (AA) has been proposed as an appropriate candidate for cancer treatment regarding the active agents in BCT. The goal of this study was to determine whether MnClTPP in combination with AA would be a promising agent for BCT. The problem of used MnClTPP's, low solubility in water, was solved by MnClTPP loading into PLGA matrix. H2O2 produced during AA decomposition oxidized MnClTPP to high-reactive oxo-MnV species. MnClTPP in presence AA leads to the production of excessive ROS levels in vitro. ROS are mainly substrates of catalase and superoxide dismutase (H2O2 and O2●-). SOD1 and catalase were identified as the key players of the MnClTPP ROS-induced cell defense system. The cytotoxicity of MnClTPP-loaded nanoparticles (NPs) was greatly increased in the presence of specific catalase inhibitor (3-amino-1,2,4-triazole (3AT)) and superoxide dismutase 1 (SOD1) inhibitor (diethyldithiocarbamate (DDC)). Cell death resulted from the combined activation of caspase-dependent (caspase 3/9 system) and independent pathways, namely the AIF translocation to nuclei. Preliminary acute toxicity and in vivo anticancer studies have been revealed the safe and potent anticancer effect of PLGA-entrapped MnClTPP in combination with AA. The findings indicate that MnClTPP-loaded PLGA NPs are promising agents for BCT.


Asunto(s)
Metaloporfirinas/química , Nanopartículas/administración & dosificación , Neoplasias/tratamiento farmacológico , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Especies Reactivas de Oxígeno/metabolismo , Animales , Apoptosis , Movimiento Celular , Proliferación Celular , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Nanopartículas/química , Neoplasias/metabolismo , Neoplasias/patología , Oxidación-Reducción , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA