Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(3)2023 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-36772310

RESUMEN

The polymer technology based on Electroactive polymers and metal composite ionic polymer has great potential and advantages in many engineering fields. In this paper, a laboratory stand for testing Ionic polymer-metal composites (IPMC) is presented. The laboratory station includes a power supply system and a measuring system for the displacement of IPMC composites. Tests and measurements are carried out using a laser transducer and a camera equipped with image analysis software to determine the IPMC strips displacement. The experimental investigation of IPMCs under different voltage supplies and waveforms, environmental working humidity conditions, temperature, and loading conditions has proved the significant influence of geometric dimension and the effect of increased stress on the displacement value. For materials powered by a higher voltage value, an increased deflection value was noted. In case of displacement, longer is the sample, higher is the displacement value. The length of the sample under load, affects adversely its performance, resulting in an increase in the load on the sample. For samples of a thick size, a more stable movement with and without load can be noticed.

2.
Sensors (Basel) ; 22(19)2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36236396

RESUMEN

The paper presents research on a specific approach to the issue of computed tomography with an incomplete data set. The case of incomplete information is quite common, for example when examining objects of large size or difficult to access. Algorithms devoted to this type of problems can be used to detect anomalies in coal seams that pose a threat to the life of miners. The most dangerous example of such an anomaly may be a compressed gas tank, which expands rapidly during exploitation, at the same time ejecting rock fragments, which are a real threat to the working crew. The approach presented in the paper is an improvement of the previous idea, in which the detected objects were represented by sequences of points. These points represent rectangles, which were characterized by sequences of their parameters. This time, instead of sequences in the representation, there are sets of objects, which allow for the elimination of duplicates. As a result, the reconstruction is faster. The algorithm presented in the paper solves the inverse problem of finding the minimum of the objective function. Heuristic algorithms are suitable for solving this type of tasks. The following heuristic algorithms are described, tested and compared: Aquila Optimizer (AQ), Firefly Algorithm (FA), Whale Optimization Algorithm (WOA), Butterfly Optimization Algorithm (BOA) and Dynamic Butterfly Optimization Algorithm (DBOA). The research showed that the best algorithm for this type of problem turned out to be DBOA.


Asunto(s)
Carbón Mineral , Heurística , Algoritmos , Tomografía Computarizada por Rayos X
3.
Sensors (Basel) ; 22(19)2022 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-36236589

RESUMEN

In order to obtain optimized elementary devices (photovoltaic modules, power transistors for energy efficiency, high-efficiency sensors) it is necessary to increase the energy conversion efficiency of these devices. A very effective approach to achieving this goal is to increase the absorption of incident radiation. A promising strategy to increase this absorption is to use very thin regions of active material and trap photons near these surfaces. The most effective and cost-effective method of achieving such optical entrapment is the Raman scattering from excited nanoparticles at the plasmonic resonance. The field of plasmonics is the study of the exploitation of appropriate layers of metal nanoparticles to increase the intensity of radiation in the semiconductor by means of near-field effects produced by nanoparticles. In this paper, we focus on the use of metal nanoparticles as plasmonic nanosensors with extremely high sensitivity, even reaching single-molecule detection. The study conducted in this paper was used to optimize the performance of a prototype of a plasmonic photovoltaic cell made at the Institute for Microelectronics and Microsystems IMM of Catania, Italy. This prototype was based on a multilayer structure composed of the following layers: glass, AZO, metal and dielectric. In order to obtain good results, it is necessary to use geometries that orthogonalize the absorption of light, allowing better transport of the photocarriers-and therefore greater efficiency-or the use of less pure materials. For this reason, this study is focused on optimizing the geometries of these multilayer plasmonic structures. More specifically, in this paper, by means of a neurocomputing procedure and an electromagnetic fields analysis performed by the finite elements method (FEM), we established the relationship between the thicknesses of Aluminum-doped Zinc oxide (AZO), metal, dielectric and their main properties, characterizing the plasmonic propagation phenomena as the optimal wavelengths values at the main interfaces AZO/METAL and METAL/DIELECTRIC.

4.
Sensors (Basel) ; 22(9)2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35590840

RESUMEN

In recent times, many different types of systems have been based on fractional derivatives. Thanks to this type of derivatives, it is possible to model certain phenomena in a more precise and desirable way. This article presents a system consisting of a two-dimensional fractional differential equation with the Riemann-Liouville derivative with a numerical algorithm for its solution. The presented algorithm uses the alternating direction implicit method (ADIM). Further, the algorithm for solving the inverse problem consisting of the determination of unknown parameters of the model is also described. For this purpose, the objective function was minimized using the ant algorithm and the Hooke-Jeeves method. Inverse problems with fractional derivatives are important in many engineering applications, such as modeling the phenomenon of anomalous diffusion, designing electrical circuits with a supercapacitor, and application of fractional-order control theory. This paper presents a numerical example illustrating the effectiveness and accuracy of the described methods. The introduction of the example made possible a comparison of the methods of searching for the minimum of the objective function. The presented algorithms can be used as a tool for parameter training in artificial neural networks.


Asunto(s)
Algoritmos , Simulación por Computador , Difusión
5.
Neural Netw ; 129: 271-279, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32569855

RESUMEN

Efficient energy production from biomass is a central issue in the context of clean alternative energy resource. In this work we propose a novel model based on spiking neural networks cubes in order to model the chemical processes that goes on in a digestor for the production of usable biogas. For the implementation of the predictive structure, we have used the NeuCube computational framework. The goals of the proposed model were: develop a tool for real applications (low-cost and efficient), generalize the data when the system presents high sensitivity to small differences on the initial conditions, take in account the "multi-scale" temporal dynamics of the chemical processes occurring in the digestor, since the variations present in the early stages of the processes are very quick, whereas in the later stages are slower. By using the first ten days of observation the implemented system has been proven able to predict the evolution of the chemical process up to the 100th day obtaining a high degree of accuracy with respect to the experimental data measured in laboratory. This is due to the fact that the spiking neural networks have shown to be able to modeling complex information processes and then it has been shown that spiking neurons are able to handle patterns of activity that spans different time scales. Thanks to such properties, our system is able to capture the multi-scale trend of the time series associated to the early-stage evolutions, as well as their interaction, which are crucial in the point of view of the information content to obtain a good long-term prediction.


Asunto(s)
Biocombustibles/análisis , Redes Neurales de la Computación , Anaerobiosis/fisiología , Predicción , Neuronas/fisiología
6.
Neural Netw ; 108: 331-338, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30245432

RESUMEN

In this paper a novel training technique is proposed to offer an efficient solution for neural network training in non-trivial and critical applications such as the diagnosis of health threatening illness. The presented technique aims to enhance the generalization capability of a neural network while preserving its sensitivity and precision. The implemented method has been devised in order to slowly increase, during training, the generalization capabilities of a Radial Basis Probabilistic Neural Network classifier, as well as preventing it from over-generalization and the consequent lack of resulting classification performances. The developed method was tested on Electrocardiograms. These latter are generally considered non-trivial both due to the difficulty to recognize some anomalous heart activities, and due to the intermittent nature of abnormal beat occurrences. The implemented training method obtained satisfactory performances, sensitivity and precision while showing high generalization capabilities.


Asunto(s)
Electrocardiografía/clasificación , Cardiopatías/clasificación , Cardiopatías/diagnóstico , Modelos Estadísticos , Redes Neurales de la Computación , Humanos
7.
Biomed Eng Lett ; 8(1): 77-85, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30603192

RESUMEN

The paper proposes a new approach to heart activity diagnosis based on Gram polynomials and probabilistic neural networks (PNN). Heart disease recognition is based on the analysis of phonocardiogram (PCG) digital sequences. The PNN provides a powerful tool for proper classification of the input data set. The novelty of the proposed approach lies in a powerful feature extraction based on Gram polynomials and the Fourier transform. The proposed system presents good performance obtaining overall sensitivity of 93%, specificity of 91% and accuracy of 94%, using a public database of over 3000 heart beat sound recordings, classified as normal and abnormal heart sounds. Thus, it can be concluded that Gram polynomials and PNN prove to be a very efficient technique using the PCG signal for characterizing heart diseases.

8.
Micromachines (Basel) ; 7(7)2016 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-30404285

RESUMEN

Surface Plasmon Polaritons are collective oscillations of electrons occurring at the interface between a metal and a dielectric. The propagation phenomena in plasmonic nanostructures is not fully understood and the interdependence between propagation and metal thickness requires further investigation. We propose an ad-hoc neural network topology assisting the study of the said propagation when several parameters, such as wavelengths, propagation length and metal thickness are considered. This approach is novel and can be considered a first attempt at fully automating such a numerical computation. For the proposed neural network topology, an advanced training procedure has been devised in order to shun the possibility of accumulating errors. The provided results can be useful, e.g., to improve the efficiency of photocells, for photon harvesting, and for improving the accuracy of models for solid state devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA