Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Math Biosci Eng ; 21(4): 5577-5603, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38872549

RESUMEN

In this paper we develop a four compartment within-host model of nutrition and HIV. We show that the model has two equilibria: an infection-free equilibrium and infection equilibrium. The infection free equilibrium is locally asymptotically stable when the basic reproduction number $ \mathcal{R}_0 < 1 $, and unstable when $ \mathcal{R}_0 > 1 $. The infection equilibrium is locally asymptotically stable if $ \mathcal{R}_0 > 1 $ and an additional condition holds. We show that the within-host model of HIV and nutrition is structured to reveal its parameters from the observations of viral load, CD4 cell count and total protein data. We then estimate the model parameters for these 3 data sets. We have also studied the practical identifiability of the model parameters by performing Monte Carlo simulations, and found that the rate of clearance of the virus by immunoglobulins is practically unidentifiable, and that the rest of the model parameters are only weakly identifiable given the experimental data. Furthermore, we have studied how the data frequency impacts the practical identifiability of model parameters.


Asunto(s)
Número Básico de Reproducción , Simulación por Computador , Infecciones por VIH , Método de Montecarlo , Carga Viral , Humanos , Número Básico de Reproducción/estadística & datos numéricos , Recuento de Linfocito CD4 , Estado Nutricional , Modelos Biológicos , Algoritmos , VIH-1
2.
bioRxiv ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38766177

RESUMEN

Uncertainty in parameter estimates from fitting within-host models to empirical data limits the model's ability to uncover mechanisms of infection, disease progression, and to guide pharmaceutical interventions. Understanding the effect of model structure and data availability on model predictions is important for informing model development and experimental design. To address sources of uncertainty in parameter estimation, we use four mathematical models of influenza A infection with increased degrees of biological realism. We test the ability of each model to reveal its parameters in the presence of unlimited data by performing structural identifiability analyses. We then refine the results by predicting practical identifiability of parameters under daily influenza A virus titers alone or together with daily adaptive immune cell data. Using these approaches, we present insight into the sources of uncertainty in parameter estimation and provide guidelines for the types of model assumptions, optimal experimental design, and biological information needed for improved predictions.

3.
R Soc Open Sci ; 11(2): 231146, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38328567

RESUMEN

Understanding the epidemiology of emerging pathogens, such as Usutu virus (USUV) infections, requires systems investigation at each scale involved in the host-virus transmission cycle, from individual bird infections, to bird-to-vector transmissions, and to USUV incidence in bird and vector populations. For new pathogens field data are sparse, and predictions can be aided by the use of laboratory-type inoculation and transmission experiments combined with dynamical mathematical modelling. In this study, we investigated the dynamics of two strains of USUV by constructing mathematical models for the within-host scale, bird-to-vector transmission scale and vector-borne epidemiological scale. We used individual within-host infectious virus data and per cent mosquito infection data to predict USUV incidence in birds and mosquitoes. We addressed the dependence of predictions on model structure, data uncertainty and experimental design. We found that uncertainty in predictions at one scale change predicted results at another scale. We proposed in silico experiments that showed that sampling every 12 hours ensures practical identifiability of the within-host scale model. At the same time, we showed that practical identifiability of the transmission scale functions can only be improved under unrealistically high sampling regimes. Instead, we proposed optimal experimental designs and suggested the types of experiments that can ensure identifiability at the transmission scale and, hence, induce robustness in predictions at the epidemiological scale.

4.
J Math Biol ; 87(6): 79, 2023 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-37921877

RESUMEN

The successful application of epidemic models hinges on our ability to estimate model parameters from limited observations reliably. An often-overlooked step before estimating model parameters consists of ensuring that the model parameters are structurally identifiable from the observed states of the system. In this tutorial-based primer, intended for a diverse audience, including students training in dynamic systems, we review and provide detailed guidance for conducting structural identifiability analysis of differential equation epidemic models based on a differential algebra approach using differential algebra for identifiability of systems (DAISY) and Mathematica (Wolfram Research). This approach aims to uncover any existing parameter correlations that preclude their estimation from the observed variables. We demonstrate this approach through examples, including tutorial videos of compartmental epidemic models previously employed to study transmission dynamics and control. We show that the lack of structural identifiability may be remedied by incorporating additional observations from different model states, assuming that the system's initial conditions are known, using prior information to fix some parameters involved in parameter correlations, or modifying the model based on existing parameter correlations. We also underscore how the results of structural identifiability analysis can help enrich compartmental diagrams of differential-equation models by indicating the observed state variables and the results of the structural identifiability analysis.


Asunto(s)
Algoritmos , Modelos Biológicos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA