Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
MethodsX ; 13: 102822, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39105089

RESUMEN

This work describes protocols for preparing specific forms of human platelet lysates from pooled platelet concentrates (PCs) and the isolation of platelet-derived extracellular vesicles (p-EVs). Clinical-grade PCs can be sourced from blood establishments immediately following expiration for transfusion use. Here, we describe methods to process PCs into specific lysates from which p-EVs can be isolated. Each lysate type is prepared using platelet activation and processing methods which produce distinct products that may be useful in different applications. For example, serum-converted platelet lysate (SCPL)-EVs were recently shown to have powerful therapeutic properties following myocardial infarction in mice. EVs can be isolated from all products using size exclusion chromatography, producing pure and consistent p-EVs from multiple batches. Together, these methods allow isolation of p-EVs with excellent potential for clinical and preclinical applications.•Platelet concentrates (PCs) obtained from local blood establishments are reliable and sustainable sources to generate biomaterials.•We outline five distinct methods of platelet lysate generation and one method for extracellular vesicle isolation.•Each platelet lysate form has different biological properties which may be suitable for certain applications.

2.
Biomaterials ; 306: 122502, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38354518

RESUMEN

Extracellular vesicles (EVs) from cultured cells or bodily fluids have been demonstrated to show therapeutic value following myocardial infarction. However, challenges in donor variation, EV generation and isolation methods, and material availability have hindered their therapeutic use. Here, we show that human clinical-grade platelet concentrates from a blood establishment can be used to rapidly generate high concentrations of high purity EVs from sero-converted platelet lysate (SCPL-EVs) with minimal processing, using size-exclusion chromatography. Processing removed serum carrier proteins, coagulation factors and complement proteins from the original platelet lysate and the resultant SCPL-EVs carried a range of trophic factors and multiple recognised cardioprotective miRNAs. As such, SCPL-EVs protected rodent and human cardiomyocytes from hypoxia/re-oxygenation injury and stimulated angiogenesis of human cardiac microvessel endothelial cells. In a mouse model of myocardial infarction with reperfusion, SCPL-EV delivery using echo-guided intracavitary percutaneous injection produced large improvements in cardiac function, reduced scar formation and promoted angiogenesis. Since platelet-based biomaterials are already widely used clinically, we believe that this therapy could be rapidly suitable for a human clinical trial.


Asunto(s)
Vesículas Extracelulares , Infarto del Miocardio , Daño por Reperfusión , Ratones , Animales , Humanos , Células Endoteliales/metabolismo , Vesículas Extracelulares/metabolismo , Miocitos Cardíacos/metabolismo , Daño por Reperfusión/metabolismo
3.
ACS Appl Bio Mater ; 6(12): 5264-5281, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38039078

RESUMEN

Synthetic hydroxyapatite nanoparticles (nHAp) possess compositional and structural similarities to those of bone minerals and play a key role in bone regenerative medicine. Functionalization of calcium phosphate biomaterials with Sr, i.e., bone extracellular matrix trace element, has been proven to be an effective biomaterial-based strategy for promoting osteogenesis in vitro and in vivo. Functionalizing nHAp with Sr2+ ions or strontium ranelate (SrRAN) can provide favorable bone tissue regeneration by locally delivering bioactive molecules to the bone defect microenvironment. Moreover, administering an antiosteoporotic drug, SrRAN, directly into site-specific bone defects could significantly reduce the necessary drug dosage and the risk of possible side effects. Our study evaluated the impact of the Sr source (Sr2+ ions and SrRAN) used to functionalize nHAp by wet precipitation on its in vitro cellular activities. The systematic comparison of physicochemical properties, in vitro Sr2+ and Ca2+ ion release, and their effect on in vitro cellular activities of the developed Sr-functionalized nHAp was performed. The ion release tests in TRIS-HCl demonstrated a 21-day slow and continuous release of the Sr2+ and Ca2+ ions from both Sr-substituted nHAp and SrRAN-loaded HAp. Also, SrRAN and Sr2+ ion release kinetics were evaluated in DMEM to understand their correlation with in vitro cellular effects in the same time frame. Relatively low concentration (up to 2 wt %) of Sr in the nHAp led to an increase in the alkaline phosphatase activity in preosteoblasts and expression of collagen I and osteocalcin in osteoblasts, demonstrating their ability to boost bone formation.


Asunto(s)
Materiales Biocompatibles , Durapatita , Durapatita/farmacología , Durapatita/química , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/química , Osteogénesis , Iones/farmacología
4.
Front Bioeng Biotechnol ; 9: 751538, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34900956

RESUMEN

The lack of a sufficient research base is the reason for the ongoing discussion regarding the genotoxic effect of magnetic field (MF) exposure on mammalian cell cultures. Chinese hamster ovary (CHO) suspension-type cells, which are widely used for biopharmaceutical production, are potentially subjected to an increased MF when cultivated in bioreactors equipped with bottom-placed magnetically coupled stirring mechanisms. The main challenge for conducting research in this field remains the availability of a suitable experimental setup that generates an appropriate MF for the raised research question. In the present study, a simple and cost-effective experimental setup was developed that generated a static MF, similar to what has been modeled in large-scale bioreactors and, at the same time, was suitable for experimental cell cultivation in laboratory conditions. The measured maximum magnetic flux density to which the cells were exposed was 0.66 T. To assess the possible genotoxic effect, cells were continuously subcultivated in laboratory petri dishes for a period of 14 days, corresponding to a typical duration of a biopharmaceutical production process in a conventional fed-batch regime. The genotoxic effect was assessed using the cytokinesis-block micronucleus assay with fluorescent staining. Results showed that a 0.66-T static MF exposure had no significant long-term effect on cell viability and chromosomal damage but demonstrated a short-term effect on cell apoptosis. Significant increase in nuclear bud formation was observed. These findings may encourage other researchers in future studies investigating cellular responses to MF exposure and contribute relevant data for comparison.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA