Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 577
Filtrar
1.
Adv Sci (Weinh) ; : e2404571, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39258712

RESUMEN

Hemophagocytic lymphohistiocytosis (HLH) is a common and highly fatal hyperinflammatory syndrome characterized by the aberrant activation of macrophages. To date, there is a lack of targeted therapies for HLH. It is validated that macrophages in HLH efficiently phagocytose anti-CD41-platelets (anti-CD41-PLTs) from immune thrombocytopenia (ITP) patients in previous research. Hence, the pathological mechanisms of ITP are mimicked and anti-CD41-PLTs are utilized to load the macrophage-toxic drug VP16 to construct macrophage-targetable engineered platelets anti-CD41-PLT-VP16, which is a novel targeted therapy against HLH. Both in vitro and in vivo studies demonstrate that anti-CD41-PLT-VP16 has excellent targeting and pro-macrophage apoptotic effects. In HLH model mice, anti-CD41-PLT-VP16 prevents hemophagocytosis and inhibits the cytokine storm. Mechanistic studies reveal that anti-CD41-PLT-VP16 increases the cytotoxicity of VP16, facilitating precise intervention in macrophages. Furthermore, it operates as a strategic "besieger" in diminishing hyperinflammation syndrome, which can indirectly prevent the abnormal activation of T cells and NK cells and reduce the Ab-dependent cell-mediated cytotoxicity effect. The first platelet-based clinical trial is ongoing. The results show that after treatment with anti-CD41-PLT-VP16, HLH patients have a threefold increase in the overall response rate compared to patients receiving conventional chemotherapy. In conclusion, anti-CD41-PLT-VP16 provides a general insight into hyperinflammation syndrome and offers a novel clinical therapeutic strategy for HLH.

2.
Adv Healthc Mater ; : e2402320, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39252648

RESUMEN

Cardiovascular disease (CVD) is a leading cause of death globally, and vascular calcification (VC) is an important independent risk factor for predicting CVD. Currently, there are no established therapeutic strategies for the treatment of VC. Although recognized combination therapies of nanomedicines can provide effective strategies for disease treatment, the clinical application of nanomedicines is limited because of their complex preparation processes, low drug loading rates, and unpredictable safety risks. Thus, developing a simple, efficient, and safe nanodrug to simultaneously regulate inflammation and autophagy may be a promising strategy for treating VC. Herein, an anti-inflammatory peptide (lysine-proline-valine peptides, KPV) and the autophagy activator rapamycin (RAPA) are self-assembled to form new carrier-free spherical nanoparticles (NPs), which shows good stability and biosafety. In vivo and in vitro, KPV-RAPA NPs significantly inhibit VC in mice compared to the other treatment groups. Mechanistically, KPV-RAPA NPs inhibit inflammatory responses and activated autophagy. Therefore, this study indicates that the new carrier-free KPV-RAPA NPs have great potential as therapeutic agents for VC combination therapy, which can promote the development of nanodrugs for VC.

3.
Int J Biol Macromol ; 279(Pt 3): 135208, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39218176

RESUMEN

Changes and causal relationships in the hierarchical structure, thermal, pasting and rheological properties, as well as the digestive behavior of starch under different high hydrostatic pressure (HHP) treatment time were investigated. At 5 min, the thickness of amorphous lamellae increased (2.76 nm) and the content of B2 and B3 chains in the amorphous lamellae decreased significantly (10.78 % and 9.08 %). As the treatment time increased, the crystalline lamellae swelled and tightly arranged double helices located in the crystalline lamellae were disturbed, resulting in a decrease in the content of double helices (12.16 %) and relative crystallinity (16.96 %). Helix dissociation, crystal disruption, lamellar collapse and granule deformation were observed at 20 min. These structural changes were closely linked to variations in the physicochemical behaviors. The thermal parameters decreased gradually, accompanied by a decrease in double helix stability. The swollen crystalline lamellae provided more space for molecular stretching, thus enhancing the pasting characteristics. Regarding the digestive behavior, the swollen amorphous lamellae facilitated the invention of enzyme molecules to hydrolyze the starch at 5 min. The digestion rate coefficient and rapidly digestible starch content increased significantly until 15 min, which demonstrated that starch was more easily digested while retaining its intact granular form.

4.
Cancer Med ; 13(17): e70182, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39253996

RESUMEN

BACKGROUND: The rarity of primary central nervous system lymphoma (PCNSL) and treatment heterogeneity contributes to a lack of prognostic models for evaluating posttreatment remission. This study aimed to develop and validate radiomic-based models to predict the durable response (DR) to high-dose methotrexate (HD-MTX)-based chemotherapy in PCNSL patients. METHODS: A total of 159 patients pathologically diagnosed with PCNSL between 2011 and 2021 across two institutions were enrolled. According to the NCCN guidelines, the DR was defined as the remission lasting ≥1 year after receiving HD-MTX-based chemotherapy. For each patient, a total of 1218 radiomic features were extracted from prebiopsy T1 contrast-enhanced MR images. Multiple machine-learning algorithms were utilized for feature selection and classification to build a radiomic signature. The radiomic-clinical integrated models were developed using the random forest method. Model performance was externally validated to verify its clinical utility. RESULTS: A total of 105 PCNSL patients were enrolled after excluding 54 cases with ineligibility. The training and validation cohorts comprised 76 and 29 individuals, respectively. Among them, 65 patients achieved DR. The radiomic signature, consisting of 8 selected features, demonstrated strong predictive performance, with area under the curves of 0.994 in training cohort and 0.913 in validation cohort. This signature was independently associated with the DR in both cohorts. Both the radiomic signature and integrated models significantly outperformed the clinical models in two cohorts. Decision curve analysis underscored the clinical utility of the established models. CONCLUSIONS: This radiomic signature and integrated models have the potential to accurately predict the DR to HD-MTX-based chemotherapy in PCNSL patients, providing valuable therapeutic insights.


Asunto(s)
Neoplasias del Sistema Nervioso Central , Imagen por Resonancia Magnética , Metotrexato , Humanos , Metotrexato/uso terapéutico , Metotrexato/administración & dosificación , Masculino , Femenino , Persona de Mediana Edad , Neoplasias del Sistema Nervioso Central/tratamiento farmacológico , Neoplasias del Sistema Nervioso Central/diagnóstico por imagen , Neoplasias del Sistema Nervioso Central/patología , Imagen por Resonancia Magnética/métodos , Anciano , Linfoma/tratamiento farmacológico , Linfoma/diagnóstico por imagen , Linfoma/patología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Adulto , Pronóstico , Aprendizaje Automático , Resultado del Tratamiento , Estudios Retrospectivos , Radiómica
5.
Acta Biomater ; 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39222704

RESUMEN

Skin-electronic interfaces have broad applications in fields such as diagnostics, therapy, health monitoring, and smart wearables. However, they face various challenges in practical use. For instance, in wet environments, the cohesion of the material may be compromised, and under dynamic conditions, maintaining conformal adhesion becomes difficult, leading to reduced sensitivity and fidelity of electrical signal transmission. The key scientific issue lies in forming a stable and tight mechanical-electronic coupling at the tissue-electronic interface. Here, inspired by octopus sucker structures and snail mucus, we propose a strategy for hydrogel skin-electronic interfaces based on multi-coupled bioinspired adhesion and introduce an ultrasound (US)-mediated interfacial toughness enhancement mechanism. Ultimately, using digital light processing micro-nano additive manufacturing technology (DLP 3D), we have developed a multifunctional, diagnostic-therapeutic integrated patch (PAMS). This patch exhibits moderate water swelling properties, a maximum deformation of up to 460%, high sensitivity (GF = 4.73), and tough and controllable bioadhesion (shear strength increased by 109.29%). Apart from outstanding mechanical and electronic properties, the patch also demonstrates good biocompatibility, anti-bacterial properties, photothermal properties, and resistance to freezing at -20 °C. Experimental results show that this skin-electronic interface can sensitively monitor temperature, motion, and electrocardiogram signals. Utilizing a rat frostbite model, we have demonstrated that this skin-electronic interface can effectively accelerate the wound healing process as a wound patch. This research offers a promising strategy for improving the performance of bioelectronic devices, sensor-based educational reforms and personalized diagnostics and therapeutics in the future. STATEMENT OF SIGNIFICANCE: Establishing stable and tight mechanical-electronic coupling at the tissue-electronic interface is essential for the diverse applications of bioelectronic devices. This study aims to develop a multifunctional, diagnostic-therapeutic integrated hydrogel skin-electronic interface patch with enhanced interfacial toughness. The patch is based on a multi-coupled bioinspired adhesive-enhanced mechanism, allowing for personalized 3D printing customization. It can be used as a high-performance diagnostic-therapeutic sensor and effectively promote frostbite wound healing. We anticipate that this research will provide new insights for constructing the next generation of multifunctional integrated high-performance bioelectronic interfaces.

6.
Heliyon ; 10(17): e37051, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39286113

RESUMEN

Compared to traditional vat photopolymerization 3D printing methods, pixel blending technique provides greater freedom in terms of user-defined lighting sources. Based on this technology, scientists have conducted research on 3D printing manufacturing for elastic materials, biologically inert materials, and materials with high transparency, making significant contributions to the fields of portable healthcare and specialty material processing. However, there has been a lack of a universal and simple algorithm to facilitate low-cost printing experiments for researchers not in the 3D printing industry. Here, we propose a mathematical approach based on morphology to simulate the light dose distribution and virtual visualization of parts produced using grayscale mask vat photopolymerization 3D printing technology. Based on this simulation, we develop an auto-correction method inspired by circle packing to modify the grayscale values of projection images, thereby improving the dimensional accuracy of printed devices. This method can significantly improve printing accuracy with just a single parameter adjustment. We conducted experimental validation of this method on a vat photopolymerization printer using common commercial resins, demonstrating its feasibility for printing high precision structures. The parameters utilized in this method are comparatively simpler to acquire compared to conventional techniques for obtaining optical parameters. For researchers in non-vat photopolymerization 3D printing industry, it is relatively user-friendly.

7.
Science ; 385(6714): 1217-1224, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39264996

RESUMEN

Chronic hepatitis B virus (HBV) infection poses a major global health challenge with massive morbidity and mortality. Despite a preventive vaccine, current treatments provide limited virus clearance, necessitating lifelong commitment. The HBV surface antigen (HBsAg) is crucial for diagnosis and prognosis, yet its high-resolution structure and assembly on the virus envelope remain elusive. Utilizing extensive datasets and advanced cryo-electron microscopy analysis, we present structural insights into HBsAg at a near-atomic resolution of 3.7 angstroms. HBsAg homodimers assemble into subviral particles with D2- and D4-like quasisymmetry, elucidating the dense-packing rules and structural adaptability of HBsAg. These findings provide insights into how HBsAg assembles into higher-order filaments and interacts with the capsid to form virions.


Asunto(s)
Cápside , Antígenos de Superficie de la Hepatitis B , Virus de la Hepatitis B , Virión , Humanos , Cápside/química , Cápside/ultraestructura , Microscopía por Crioelectrón , Antígenos de Superficie de la Hepatitis B/química , Virus de la Hepatitis B/ultraestructura , Virus de la Hepatitis B/química , Virus de la Hepatitis B/fisiología , Multimerización de Proteína , Envoltura Viral/química , Envoltura Viral/ultraestructura , Virión/ultraestructura , Virión/química , Ensamble de Virus , Hepatitis B Crónica/virología , Conjuntos de Datos como Asunto
8.
Sci Rep ; 14(1): 19042, 2024 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-39152171

RESUMEN

Spinal cord injury (SCI) presents a critical medical challenge, marked by substantial neural damage and persistent functional deficits. This study investigates the therapeutic potential of cold atmospheric plasma (CAP) for SCI, utilizing a tailored dielectric barrier discharge (DBD) device to conduct comprehensive in vivo and in vitro analyses. The findings show that CAP treatment significantly improves functional recovery after SCI, reduces neuronal apoptosis, lowers inflammation, and increases axonal regeneration. These findings illustrate the efficacy of CAP in fostering a conducive environment for recovery by modulating inflammatory responses, enhancing neuronal survival, and encouraging regenerative processes. The underlying mechanism involves CAP's reactive oxygen species (ROS) reduction, followed by activating antioxidant enzymes. These findings position CAP as a pioneering approach for spinal cord injury (SCI) treatment, presenting opportunities for improved neural recovery and establishing a new paradigm in SCI therapy.


Asunto(s)
Estrés Oxidativo , Especies Reactivas de Oxígeno , Recuperación de la Función , Traumatismos de la Médula Espinal , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/fisiopatología , Estrés Oxidativo/efectos de los fármacos , Animales , Recuperación de la Función/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Gases em Plasma/farmacología , Gases em Plasma/uso terapéutico , Femenino , Ratas , Regeneración Nerviosa/efectos de los fármacos , Apoptosis/efectos de los fármacos , Modelos Animales de Enfermedad
9.
BMC Plant Biol ; 24(1): 781, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39148017

RESUMEN

BACKGROUND: Sudden temperature drops, resulting from extreme weather events, often occur during the boll-setting period of cotton in Xinjiang, China, causing decreased expression of Bacillus thuringiensis (Bt) insecticidal proteins in cotton bolls. The precise threshold temperatures and durations that lead to significant changes in Cry1Ac endotoxin levels under low temperatures remain unclear. To address this, we investigated the effects of different temperatures and stress durations on Cry1Ac endotoxin levels in cotton bolls. In 2020-2021, two Bt transgenic cotton varieties, conventional Sikang1 and hybrid Sikang3, were selected as experimental materials. Various low temperatures (ranging from 16 to 20 °C) with different durations (12 h, 24 h and 48 h) were applied during the peak boll-setting period. RESULTS: As the temperature decreased, the Cry1Ac endotoxin content in the boll shell, fiber, and seed exhibited a declining trend. Moreover, the threshold temperature which caused a significant reduction in Cry1Ac endotoxin content increased with the prolonged duration of low-temperature stress. Among the components of cotton bolls, seeds were most affected by low-temperature stress, with the threshold temperature for a significant reduction in Cry1Ac endotoxin content ranging from 17 °C to 19 °C. Correlation analysis indicated that low temperatures led to a decrease in protein synthesis capacity and an increase in degradation ability, resulting in reduced Cry1Ac endotoxin content. Pathway analysis revealed that both free amino acid and peptidase had significant negative effects on Cry1Ac endotoxin content. CONCLUSION: In summary, when the daily average temperature was ≤ 19 °C, implementing cultural practices to reduce free amino acid content and peptidase activity could serve as effective cold defense strategies for Bt cotton production.


Asunto(s)
Toxinas de Bacillus thuringiensis , Proteínas Bacterianas , Frío , Endotoxinas , Gossypium , Proteínas Hemolisinas , Nitrógeno , Semillas , Gossypium/genética , Gossypium/metabolismo , Proteínas Hemolisinas/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Semillas/metabolismo , Nitrógeno/metabolismo , Plantas Modificadas Genéticamente , Bacillus thuringiensis
10.
Adv Mater ; : e2405766, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39171420

RESUMEN

The ultrafast-laser-matter interactions enable "top-down" laser surface structuring, especially for materials difficult to process, with "bottom-up" self-organizing features. The subwavelength scenarios of laser-induced structuring are improved in defects and long-range order by applying positive/negative feedbacks. It is still hardly reported for supra-wavelength laser structuring more associated with complicated thermo/hydro-dynamics. For the first time to the knowledge, the near-field-regulated ultrafast-laser lithography of self-arrayed supra-wavelength micro/nano-pores directly on ultra-hard metallic glass is developed here. The plasmonic hot spots on pre-structures, as the positive feedback, clamped the lateral geometries (i.e., position, size). Simultaneously, it drilled and self-organized into micro/nano-pore arrays by photo-dynamic plasma ablation and Marangoni removal confined under specific femtosecond-laser irradiation, as the negative feedback. The mechanisms and finite element modeling of the multi-physical transduction (based on the two-temperature model), the far-field/near-field coupling, and the polarization dependence during laser-matter interactions are studied. Large-area micro/nano-pore arrays (centimeter scale or larger)  are manufactured with tunable periods (1-5 µm) and geometries (e.g., diameters of 500 nm-6 µm using 343, 515, and 1030 lasers, respectively). Consequently, the mid/far-infrared reflectivity at 2.5-6.5 µm iss decreased from ≈80% to ≈5%. The universality of multi-physical coupling and near-field enhancements makes this approach widely applicable, or even irreplaceable, in various applications.

11.
J Diabetes ; 16(8): e13589, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39136595

RESUMEN

BACKGROUND: The triglyceride-glucose (TyG) index and high-sensitivity C-reactive protein (hsCRP) are the commonly used biomarkers for insulin resistance and systemic inflammation, respectively. We aimed to investigate the combined association of TyG and hsCRP with the major adverse cardiovascular events (MACE) in patients with chronic coronary syndrome (CCS). METHODS: A total of 9421 patients with CCS were included in this study. The primary endpoint was defined as a composite of MACE covering all-cause death, nonfatal myocardial infarction, and revascularization. RESULTS: During the 2-year follow-up period, 660 (7.0%) cases of MACE were recorded. Participants were divided equally into three groups according to TyG levels. Compared with the TyG T1 group, the risk of MACE was significantly higher in the TyG T3 group. It is noteworthy that among patients in the highest tertile of TyG, hsCRP >3 mg/L was significantly associated with an increased risk of MACE, whereas the results were not significant in the medium to low TyG groups. When patients were divided into six groups according to hsCRP and TyG, the Cox regression analysis showed that patients in the TyG T3 and hsCRP >3 mg/L group had a significantly higher risk of MACE than those in the TyG T1 and hsCRP ≤3 mg/L group. However, no significant interaction was found between TyG and hsCRP on the risk of MACE. CONCLUSION: Our study suggests that the concurrent assessment of TyG and hsCRP may be valuable in identifying high-risk populations and guiding management strategies among CCS patients.


Asunto(s)
Biomarcadores , Glucemia , Proteína C-Reactiva , Triglicéridos , Humanos , Proteína C-Reactiva/análisis , Proteína C-Reactiva/metabolismo , Masculino , Femenino , Persona de Mediana Edad , Triglicéridos/sangre , Glucemia/análisis , Glucemia/metabolismo , Biomarcadores/sangre , Anciano , Enfermedades Cardiovasculares/sangre , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/epidemiología , Estudios de Cohortes , Pronóstico , Factores de Riesgo , Estudios de Seguimiento , Enfermedad Crónica
13.
Circ Cardiovasc Imaging ; 17(8): e016117, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39163378

RESUMEN

BACKGROUND: Coronary computed tomography angiography provides valuable information for evaluating the difficulty of chronic total occlusion (CTO) percutaneous coronary intervention. This study aimed to investigate the value of CTO plaque characteristics derived from radiomics analysis for predicting the difficulty of percutaneous coronary intervention. METHODS: Patients with CTO were retrospectively enrolled from a hospital as training and internal test sets and from the other 2 territory hospitals as external test sets. Radiomics characteristics were extracted from the CTO segment on coronary computed tomography angiography. Radiomics and combined models were developed to predict successful guidewire crossing within 30 minutes (guidewire success) of CTO percutaneous coronary intervention. Subgroup analysis was conducted to investigate the influence of potential risk factors on the radiomics model performance. RESULTS: A total of 551 patients (median, 60; interquartile range, 52.00-66.00 years, 460 men) with 565 CTO lesions were finally enrolled. In the training, internal test, and external test sets, 203 of 357, 85 of 149, and 38 of 59 CTO lesions achieved guidewire success, respectively. Six radiomics features were selected for constructing the radiomics model. In the external test set, the area under the receiver operating characteristic curve of the radiomics model was significantly higher than prior prediction models (P<0.05 for all) with the area under the receiver operating characteristic curve, accuracy, sensitivity, and specificity of 0.86, 74.58%, 81.58%, and 61.90%, respectively. The performance of the radiomics model was dependent on calcification, CTO location, adjacent branch(es), and operator caseload. CONCLUSIONS: CTO characteristics revealed by radiomics analysis can be used as effective imaging biomarkers for predicting guidewire success. However, the performance of the radiomics model depends on anatomic and operator factors.


Asunto(s)
Angiografía por Tomografía Computarizada , Angiografía Coronaria , Oclusión Coronaria , Intervención Coronaria Percutánea , Placa Aterosclerótica , Valor Predictivo de las Pruebas , Radiómica , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Enfermedad Crónica , Angiografía Coronaria/métodos , Oclusión Coronaria/diagnóstico por imagen , Oclusión Coronaria/cirugía , Oclusión Coronaria/terapia , Vasos Coronarios/diagnóstico por imagen , Intervención Coronaria Percutánea/métodos , Estudios Retrospectivos , Factores de Tiempo , Resultado del Tratamiento
14.
Nanomaterials (Basel) ; 14(16)2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39195372

RESUMEN

The precipitation behavior of Cu-bearing ultra-low carbon steel after step quenching and tempering at 923 K for 0.5-2.5 h was investigated. The size, quantity, and characteristic distribution of nano-precipitates were analyzed using transmission electron microscopy, and the microstructure of B2 (an ordered structure belonging to the body-centered cubic structure), 9R (a special triclinic lattice that has characteristics of rhombohedral structure), 3R (a special triclinic lattice like 9R), and FCT (face-centered tetragonal lattices) were accurately determined. The relationship between nano-precipitates and mechanical properties under different heat treatment processes was obtained, revealing that nano-precipitates effectively enhanced the yield strength of Cu-bearing ultra-low carbon steel. There were two forms of crystal structure evolution sequence of precipitation: B2→multi twin 9R→detwined 9R→FCT→FCC and B2→multi-twin 9R→detwinned 9R→3R→FCT→FCC. The morphology of the precipitated particles during the growth process changed from spherical to ellipsoidal and finally to rod-shaped. It was proven that a stable 3R structure existed due to the coexistence of 9R, 3R, and FCT structures in the same precipitate particle.

15.
PeerJ ; 12: e17927, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39210917

RESUMEN

Melatonin regulates defense responses in plants under environmental stress. This study aimed to explore the impact of exogenous melatonin on the phenotype and physiology of 'BM1' pumpkin seedlings subjected to waterlogging stress. Waterlogging stress was induced following foliar spraying of melatonin at various concentrations (CK, 0, 10, 100, 200, and 300 µmol·L-1). The growth parameters, malondialdehyde (MDA) content, antioxidant enzyme activity, osmoregulatory substance levels, and other physiological indicators were assessed to elucidate the physiological mechanisms underlying the role of exogenous melatonin in mitigating waterlogging stress in pumpkin seedlings. The results indicate that pumpkin seedlings exhibit waterlogging symptoms, such as leaf wilting, water loss, edge chlorosis, and fading, under waterlogging stress conditions. Various growth indicators of the seedlings, including plant height, stem diameter, root length, fresh and dry weight, and leaf chlorophyll content, were significantly reduced. Moreover, the MDA content in leaves and roots increased significantly, along with elevated activities of superoxide dismutase, catalase, peroxidase, and soluble protein contents. When different concentrations of melatonin were sprayed on the leaves post waterlogging stress treatment, pumpkin seedlings showed varying degrees of recovery, with the 100 µmol·L-1 treatment displaying the best growth status and plant morphological phenotypes. There were no significant differences compared to the control group. Seedling growth indicators, chlorophyll content, root activity, antioxidant enzyme activities, soluble protein content, and osmotic adjustment substance content all increased to varying degrees with increasing melatonin concentration, peaking at 100 µmol·L-1. Melatonin also reduced membrane damage caused by oxidative stress and alleviated osmotic imbalance. Exogenous melatonin enhanced the activities of antioxidant enzymes and systems involved in scavenging reactive oxygen species, with 100 µmol·L-1 as the optimal concentration. These findings underscore the crucial role of exogenous melatonin in alleviating waterlogging stress in pumpkins. The findings of this study offer a theoretical framework and technical assistance for cultivating waterlogging-resistant pumpkins in practical settings. Additionally, it establishes a theoretical groundwork for the molecular breeding of pumpkins with increased tolerance to waterlogging.


Asunto(s)
Antioxidantes , Cucurbita , Melatonina , Plantones , Estrés Fisiológico , Melatonina/farmacología , Melatonina/administración & dosificación , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Antioxidantes/metabolismo , Antioxidantes/farmacología , Cucurbita/efectos de los fármacos , Cucurbita/crecimiento & desarrollo , Estrés Fisiológico/efectos de los fármacos , Malondialdehído/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Agua/metabolismo
16.
Int J Biol Macromol ; 278(Pt 3): 134918, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39179073

RESUMEN

Early blight caused by Alternaria solani is a destructive disease in potato production. Here, through systematically screening of an effector protein pool consisting of 115 small cysteine-containing candidate Aex (Alternariaextracellular proteins) in A. solani, we identified a core effector protein named Aex59, a pathogen-associated molecular pattern (PAMP) molecule. Aex59 is uniquely present in the Ascomycota of fungi and can activate defense responses in multiple plants. Targeted gene disruption showed that Aex59 is a virulence factor and participates in spore development. Perception of Aex59 in Nicotiana benthamiana does not depend on the receptor-like kinases Brassinosteroid-associated kinase1 (BAK1) and Suppressor of BIR1-1 (SOBIR1), which are required for multiple pattern recognition receptors (PRR) pathways. Sequence analysis revealed that Aex59 is a new member of the Alt a 1 protein family and is a potential molecular marker capable of aiding in the classification of the fungi Alternaria spp.


Asunto(s)
Alternaria , Proteínas Fúngicas , Nicotiana , Enfermedades de las Plantas , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Enfermedades de las Plantas/microbiología , Nicotiana/microbiología , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Secuencia de Aminoácidos
17.
Polymers (Basel) ; 16(15)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39125224

RESUMEN

Inspired by the layered structure, light absorption, and charge carrier pathway of chloroplast thylakoids in natural photosynthesis, we propose a novel artificial photosynthesis platform, which is composed of layered structured vaterite as the scaffold with gold nanoparticles (AuNPs), photosensitizer eosin Y (EY), and redox enzyme L-glutamate dehydrogenase (GDH) as the functional components. The EY exhibited significantly enhanced light absorption and charge carrier generation due to the localized surface plasmon resonance (LSPR) around the AuNPs and light refraction within the layers. This artificial photosynthesis platform can regenerate reduced nicotinamide adenine dinucleotide (NADH) under visible light and promote the rapid conversion of α-ketoglutarate to L-glutamate (0.453 Mm/h). The excellent biocompatibility of layered vaterite significantly enhances the resistance of GDH to harsh conditions, including high pH (pH = 10) and elevated temperatures (37-57 °C).

18.
Microorganisms ; 12(8)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39203400

RESUMEN

Four pigment-producing rhizobial strains nodulating Sesbania cannabina (Retz.) Poir. formed a unique group in genus Microvirga in the phylogeny of a 16S rRNA gene and five housekeeping genes (gyrB, recA, dnaK, glnA, and atpD) in a genome analysis, phenotypic characteristics analysis, and chemotaxonomic analysis. These four strains shared as high as 99.3% similarity with Microvirga tunisiensis LmiM8T in the 16S rRNA gene sequence and, in an MLSA, were subdivided into two clusters, ANI (genome average nucleotide) and dDDH (digital DNA-DNA hybridization) which shared sequence similarities lower than the species thresholds with each other and with the reference strains for related Microvirga species. The polar lipids elucidated that phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), and cardiolipin were the main components for strain SWF67558T and for strain HBU65207T, with the exception of PC. SWF67558T and HBU65207T strains had similar predominant cellular fatty acids, including C16:0, C18:0, summed feature 2, and summed feature8, but with different contents. In addition, all the four novel strains produced pink-pigment, and the main coloring material extract from strain SWF67558T was identified as zeaxanthin, which presented antioxidant ability and reduction power. With all the phylogenetic and phenotypic divergency, we proposed these pink-pigmented symbiotic bacteria as two novel species, named Microvirga sesbaniae sp. nov. and Microvirga yunnanensis sp. nov., with SWF67558T (=KCTC82331T=GDMCC1.2024T) and HBU65207T (=KCTC92125T=GDMCC1.2023T) as the type strains, respectively.

19.
Sci Rep ; 14(1): 17641, 2024 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-39085366

RESUMEN

We aimed to assess the cumulative incidences of cancer-specific mortality (CSM) in non-metastatic patients with non­muscle invasive urothelial bladder cancer (NMIUBC) and establish competing risk nomograms to predict CSM. Patient data was sourced from the Surveillance, Epidemiology, and End Results database, as well as the electronic medical record system in our institution to form the external validation cohort. Sub-distribution proportional hazards model was utilized to determine independent risk factors influencing CSM in non-metastatic NMIUBC patients. Competitive risk nomograms were constructed to predict 3-year, 5-year, and 8-year cancer-specific survival (CSS) in all patients group, TURBT group and cystectomy group, respectively. The discrimination and accuracy of the model were validated through the concordance index (C-index), the area under the receiver operating characteristic curve (AUC), and calibration curves. Decision curve analysis (DCA) and a risk stratification system was employed to evaluate the clinical utility of the model. Race, age, marital status, surgery in other sites, tumor size, histological type, histological grade, T stage and N stage were identified as independent risk factors to predict CSS in all patients group. The C-index for 3-year CSS was 0.771, 0.770 and 0.846 in the training, testing and external validation sets, respectively. The ROC curves showed well discrimination and the calibration plots were well fitted and consistent. Moreover, DCA demonstrated well clinical effectiveness. Altogether, the competing risk nomogram displayed excellent discrimination and accuracy for predicting CSS in non-metastatic NMIUBC patients, which can be applied in clinical practice to help tailor treatment plans and make clinical decisions.


Asunto(s)
Nomogramas , Neoplasias de la Vejiga Urinaria , Humanos , Neoplasias de la Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/mortalidad , Masculino , Femenino , Anciano , Persona de Mediana Edad , Factores de Riesgo , Medición de Riesgo/métodos , Curva ROC , Cistectomía , Programa de VERF , Anciano de 80 o más Años , Invasividad Neoplásica , Estudios Retrospectivos , Carcinoma de Células Transicionales/mortalidad , Carcinoma de Células Transicionales/patología , Pronóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA