Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Plast Reconstr Aesthet Surg ; 83: 148-154, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37276733

RESUMEN

BACKGROUND: Transaxillary endoscopic dual-plane breast augmentation is becoming increasingly mature. The intraoperative separation of the implant into the space is often performed using monopolar cautery. The use of the harmonic scalpel has proved more beneficial in several surgeries. However, no study has ever addressed the effects of harmonic scalpel usage compared to monopolar cautery in transaxillary endoscopic dual-plane breast augmentation. METHODS: In this randomized controlled study, we enrolled patients (n = 78) who underwent breast augmentation in our hospital from January to October 2022. Participants were randomized with an intentional unequal allocation ratio (2:1 in the harmonic scalpel group: monopolar cautery group). Outcome measures included: total postoperative drainage volume, postoperative drainage volume for the first 24 h, number of postoperative drainage days, daily pain scored through the visual analog scale, operative time, and reoperation rate. RESULTS: A total of 51 patients in the harmonic scalpel group and 24 patients in the monopolar cautery group were analyzed. Overall, in comparison to the monopolar cautery group, the harmonic scalpel group showed improved total postoperative drainage volume, postoperative drainage volume for the first 24 h, number of postoperative drainage days, and postoperative pain scores. No differences were found regarding operative time and reoperation rate. CONCLUSION: Compared with monopolar cautery, harmonic scalpel usage in transaxillary endoscopic breast augmentation has evident advantages regarding postoperative drainage and patients' pain scores, making it an instrument worth of recommendation.


Asunto(s)
Cauterización , Electrocoagulación , Humanos , Instrumentos Quirúrgicos , Dolor Postoperatorio , Endoscopía
2.
Plant Dis ; 103(7): 1693-1702, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31106703

RESUMEN

Companion cropping with wheat (Triticum aestivum L.) can enhance watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai] wilt disease resistance against Fusarium oxysporum f. sp. niveum. However, the mechanism of resistance induction remains unknown. In this study, the effects of microbial community dynamics and the interactions between wheat and watermelon plants, particularly the effect of wheat root exudates on watermelon resistance against F. oxysporum f. sp. niveum, were examined using a plant-soil feedback trial and plant tissue culture approach. The plant-soil feedback trial showed that treating watermelon with soil from wheat/watermelon companion cropping decreased watermelon wilt disease incidence and severity, increased lignin biosynthesis- and defense-related gene expression, and increased ß-1,3-glucanase activity in watermelon roots. Furthermore, soil microbes can contribute to increasing disease resistance in watermelon plants. Tissue culture experiments showed that both exogenous addition of wheat root exudates and companion cropping with wheat increased host defense gene expression, lignin and total phenols, and increased ß-1,3-glucanase activity in watermelon roots. In conclusion, both root exudates from wheat and the related soil microorganisms in a wheat/watermelon companion cropping system played critical roles in enhancing resistance to watermelon wilt disease induced by F. oxysporum f. sp. niveum.


Asunto(s)
Citrullus , Resistencia a la Enfermedad , Fusarium , Triticum , Agricultura/métodos , Citrullus/crecimiento & desarrollo , Citrullus/microbiología , Resistencia a la Enfermedad/efectos de los fármacos , Resistencia a la Enfermedad/fisiología , Fusarium/fisiología , Enfermedades de las Plantas/prevención & control , Extractos Vegetales/farmacología , Microbiología del Suelo , Triticum/química , Triticum/crecimiento & desarrollo
3.
J Plant Physiol ; 234-235: 154-166, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30818185

RESUMEN

This paper investigates the physiological mechanism of the effect of delaying cucumber senescence on protein levels under the experimental model of monoculture and wheat intercropping. We analyzed cucumber roots for differential protein expression, and protein types were identified by core technology of proteomics. 45 differential proteins were identified as being differentially expressed between monoculture and intercropping of wheat, which were involved in carbohydrate metabolism, antioxidant and stress response, growth and development regulation, biological information transfer, and nucleic acid biosynthesis. The results showed the rate of photosynthesis of cucumber was increased under wheat intercropping pattern due to three enzymes being up-regulated. The respiration of cucumber was reduced when five enzymes were down-regulated. The antioxidant and resistant capacity of cucumber was enhanced significantly under wheat intercropping pattern because two enzymes were down-regulated while the activity of four other antioxidant enzymes was up-regulated. Intercropping wheat could delay the senescence of cucumber leaves by increasing the expression of IPT gene, reducing the expression of PAO and ETR2 gene, and inhibiting the expression of Cu/Zn-SOD and GS1 gene in later stages. Two proteins related to growth and development in cucumber were up-regulated, and one was down-regulated, while two proteins related to nucleic acid biosynthesis and chaperonin showed obvious down-regulation under wheat intercropping. Therefore, the growth and development was improved and senescence of cucumber could be delayed. Under intercropping pattern, the fresh weight, chlorophyll content, photosynthetic rate, and peroxidase activity of cucumber plants were higher than those of cucumber monoculture groups. Thus, the senescence of cucumber could be delayed under wheat intercropping by regulating its physiological mechanisms, such as by improving photosynthesis, reducing respiratory consumption, slowing the cell apoptosis rate, and enhancing the antioxidant and resistant capacity significantly, etc.


Asunto(s)
Cucumis sativus/fisiología , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Agricultura/métodos , Hojas de la Planta/fisiología , Triticum
4.
Sci Rep ; 6: 36445, 2016 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-27808257

RESUMEN

Companion cropping with potato onions (Allium cepa var. agrogatum Don.) can enhance the disease resistance of tomato plants (Solanum lycopersicum) to Verticillium dahliae infection by increasing the expressions of genes related to disease resistance. However, it is not clear how tomato plants physiologically respond to V. dahliae infection and what roles sulfur plays in the disease-resistance. Pot experiments were performed to examine changes in the physiology and sulfur metabolism of tomato roots infected by V. dahliae under the companion cropping (tomato/potato onion). The results showed that the companion cropping increased the content of total phenol, lignin and glutathione and increased the activities of peroxidase, polyphenol oxidase and phenylalanine ammonia lyase in the roots of tomato plants. RNA-seq analysis showed that the expressions of genes involved in sulfur uptake and assimilation, and the formation of sulfur-containing defense compounds (SDCs) were up-regulated in the V. dahlia-infected tomatoes in the companion cropping. In addition, the interactions among tomato, potato onion and V. dahliae induced the expression of the high- affinity sulfate transporter gene in the tomato roots. These results suggest that sulfur may play important roles in tomato disease resistance against V. dahliae.


Asunto(s)
Cebollas/crecimiento & desarrollo , Solanum lycopersicum/metabolismo , Azufre/metabolismo , Verticillium/fisiología , Agricultura , Proteínas de Transporte de Anión/genética , Proteínas de Transporte de Anión/metabolismo , Catecol Oxidasa/metabolismo , Regulación de la Expresión Génica de las Plantas , Glutatión/metabolismo , Lignina/metabolismo , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/microbiología , Metionina/metabolismo , Cebollas/metabolismo , Peroxidasa/metabolismo , Fenoles/metabolismo , Fenilanina Amoníaco-Liasa/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/enzimología , Raíces de Plantas/metabolismo , ARN de Planta/química , ARN de Planta/aislamiento & purificación , ARN de Planta/metabolismo , Análisis de Secuencia de ARN , Superóxido Dismutasa/metabolismo
5.
Front Plant Sci ; 7: 846, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27379133

RESUMEN

BACKGROUND AND AIMS: In China, excessive fertilization has resulted in phosphorus (P) accumulation in most greenhouse soils. Intercropping can improve the efficiency of nutrient utilization in crop production. In this study, pot experiments were performed to investigate the effects of intercropping with potato onion (Allium cepa L. var. aggregatum G. Don) on tomato (Solanum lycopersicum L.) seedlings growth and P uptake, the diversity of rhizosphere phosphobacteria and alkaline phosphatase (ALP) genes in phosphorus-rich soil. METHODS: The experiment included three treatments, namely tomato monoculture (TM), potato onion monoculture (OM), and tomato/potato onion intercropping (TI-tomato intercropping and OI-potato onion intercropping). The growth and P uptake of tomato and potato onion seedlings were evaluated. The dilution plating method was used to determine the population of phosphate-solubilizing bacteria (PSB) and phosphate-mineralizing bacteria (PMB). The genomic DNAs of PSB and PMB in the rhizosphere of tomato and potato onions were extracted and purified, and then, with the primer set of 338f /518r, the PCR amplification of partial bacterial 16S rDNA sequence was performed and sequenced to determine the diversities of PSB and PMB. After extracting the total genomic DNAs from the rhizosphere, the copy numbers and diversities of ALP genes were investigated using real-time PCR and PCR-DGGE, respectively. RESULTS: Intercropping with potato onion promoted the growth and P uptake of tomato seedlings, but inhibited those of potato onion. After 37 days of transplanting, compared to the rhizosphere of TM, the soil pH increased, while the electrolytic conductivity and Olsen P content decreased (p < 0.05) in the rhizosphere of TI. The populations and diversities of PSB, PMB, and ALP genes increased significantly in the rhizosphere of TI, compared to the rhizosphere of TM. CONCLUSION: The results indicated that intercropping with potato onion promoted the growth and P uptake of tomato in phosphorus-rich soil and affected the community structure and function of phosphobacteria in tomato rhizosphere. Intercropping with potato onion also improved soil quality by lowering levels of soil acidification and salinization.

6.
Front Plant Sci ; 6: 726, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26442040

RESUMEN

Intercropping could alleviate soil-borne diseases, however, few studies focused on the immunity of the host plant induced by the interspecific interactions. To test whether or not intercropping could enhance the disease resistance of host plant, we investigated the effect of companion cropping with potato onion on tomato Verticillium wilt caused by Verticillium dahliae (V. dahliae). To investigate the mechanisms, the root exudates were collected from tomato and potato onion which were grown together or separately, and were used to examine the antifungal activities against V. dahliae in vitro, respectively. Furthermore, RNA-seq was used to examine the expression pattern of genes related to disease resistance in tomato companied with potato onion compared to that in tomato grown alone, under the condition of infection with V. dahliae. The results showed that companion cropping with potato onion could alleviate the incidence and severity of tomato Verticillium wilt. The further studies revealed that the root exudates from tomato companied with potato onion significantly inhibited the mycelia growth and spore germination of V. dahliae. However, there were no significant effects on these two measurements for the root exudates from potato onion grown alone or from potato onion grown with tomato. RNA-seq data analysis showed the disease defense genes associated with pathogenesis-related proteins, biosynthesis of lignin, hormone metabolism and signal transduction were expressed much higher in the tomato companied with potato onion than those in the tomato grown alone, which indicated that these defense genes play important roles in tomato against V. dahliae infection, and meant that the disease resistance of tomato against V. dahliae was enhanced in the companion copping with potato onion. We proposed that companion cropping with potato onion could enhance the disease resistance of tomato against V. dahliae by regulating the expression of genes related to disease resistance response. This may be a potential mechanism for the management of soil-borne plant diseases in the intercropping system.

7.
Ying Yong Sheng Tai Xue Bao ; 24(4): 1109-17, 2013 Apr.
Artículo en Chino | MEDLINE | ID: mdl-23898672

RESUMEN

Taking the Chinese onion cultivars with different allelopathy potentials as the donor and cucumber as the accepter, this paper studied the effects of Chinese onion' s root exudates on the seedlings growth of cucumber and the culturable microbial number and bacterial community structure in the seedlings rhizosphere soil. The root exudates of the Chinese onion cultivars could promote the growth of cucumber seedlings, and the stimulatory effect increased with the increasing concentration of the root exudates. However, at the same concentrations of root exudates, the stimulatory effect had no significant differences between the Chinese onion cultivars with strong and weak allelopathy potential. The root exudates of the Chinese onion cultivars increased the individual numbers of bacteria and actinomyces but decreased those of fungi and Fusarium in rhizosphere soil, being more significant for the Chinese onion cultivar with high allelopathy potential (L-06). The root exudates of the Chinese onion cultivars also increased the bacterial community diversity in rhizosphere soil. The cloning and sequencing results indicated that the differential bacteria bands were affiliated with Actinobacteria, Proteobacteria, and Anaerolineaceae, and Anaerolineaceae only occurred in the rhizosphere soil in the treatment of high allelopathy potential Chinese onion (L-06). It was suggested that high concentration (10 mL per plant) of root exudates from high allelopathy potential Chinese onion (L-06) could benefit the increase of bacterial community diversity in cucumber seedlings rhizosphere soil.


Asunto(s)
Cucumis sativus/crecimiento & desarrollo , Cebollas/fisiología , Feromonas/fisiología , Exudados de Plantas/farmacología , Microbiología del Suelo , Agricultura/métodos , Cucumis sativus/microbiología , Cebollas/química , Raíces de Plantas/química , Rizosfera , Plantones/crecimiento & desarrollo
8.
Ying Yong Sheng Tai Xue Bao ; 21(3): 661-7, 2010 Mar.
Artículo en Chino | MEDLINE | ID: mdl-20560322

RESUMEN

By using PCR-DGGE technique, this paper studied the effects of different concentration (0, 25, 50, 100, and 200 mg x kg(-1) soil) cinnamic acid on the bacterial DNA polymorphism in rhizosphere soil of cucumber seedlings under the stress of 292.5 and 585 mg NaCl x kg(-1) soil. At all growth stages of cucumber seedlings, treatment 50 mg x kg(-1) of cinnamic acid had the similar band numbers and band gray scales in DGGE profiles to treatment 0 mg x kg(-1) of cinnamic acid, but the diversity index, richness index, and evenness index were the highest; while in treatments 100 and 200 mg x kg(-1) soil of cinnamic acid, the band numbers and band gray scales decreased, and the diversity index, richness index, and evenness index were lower. Our results demonstrated that low concentration cinnamic acid relieved the salt stress on soil microbes, while high concentration cinnamic acid aggravated the stress. The cloning and sequencing results showed that the main bacterial groups affected by salt stress were uncultured bacterial species, alpha-Proteobacteria, beta-proteobacteria, and gamma-proteobacteria, and a few were Firmicutes, Acidobacteria, and Actinobacteria.


Asunto(s)
Cinamatos/farmacología , Cucumis sativus/microbiología , ADN Bacteriano/genética , Rizosfera , Cloruro de Sodio/toxicidad , ADN Bacteriano/efectos de los fármacos , Polimorfismo Genético , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA