Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Asunto principal
Intervalo de año de publicación
1.
Forensic Sci Int Genet ; 65: 102883, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37120981

RESUMEN

Interest in the human microbiome has grown in recent years because of increasing applications to biomedicine and forensic science. However, the potential for dating evidence at a crime scene based upon time-dependent changes in microbial signatures has not been established, despite a relatively straightforward scientific process for isolating the microbiome. We hypothesize that modifications in microbial diversity, abundance, and succession can provide estimates of the time a surface was touched for investigative purposes. In this proof-of-concept research, the sequencing and analysis of the 16 S rRNA gene from microbes present in fresh and aged latent fingerprints deposited by three donors with pre- and post-washed hands is reported. The stability of major microbial phyla is confirmed while the dynamics of less abundant groups is described up to 21 days post-deposition. Most importantly, a phylum is suggested as the source for possible biological markers to date fingerprints: Deinococcus-Thermus.


Asunto(s)
Microbiota , Humanos , Anciano , Tacto , Crimen , Ciencias Forenses , Dermatoglifia
2.
bioRxiv ; 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38168274

RESUMEN

Extensive research has uncovered the involvement of the human gut microbiome in various facets of human health, including metabolism, nutrition, physiology, and immune function. Researchers often study fecal microbiota as a proxy for understanding the gut microbiome. However, it has been demonstrated that this approach may not suffice to yield a comprehensive understanding of the entire gut microbial community. Emerging research is revealing the heterogeneity of the gut microbiome across different gastrointestinal (GI) locations in both composition and functions. While spatial metagenomics approach has been developed to address these variations in mice, limitations arise when applying it to human-subject research, primarily due to its invasive nature. With these restrictions, we introduce Micro-DeMix, a mixture beta-multinomial model that decomposes the fecal microbiome at compositional level to understand the heterogeneity of the gut microbiome across various GI locations and extract meaningful insights about the biodiversity of the gut microbiome. Moreover, Micro-DeMix facilitates the discovery of differentially abundant microbes between GI regions through a hypothesis testing framework. We utilize the Inflammatory Bowel Disease (IBD) data from the NIH Integrative Human Microbiome Project to demonstrate the effectiveness and efficiency of the proposed Micro-DeMix.

3.
Integr Mater Manuf Innov ; 6(2): 160-171, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-31976207

RESUMEN

The response of a composite material is the result of a complex interplay between the prevailing mechanics and the heterogenous structure at disparate spatial and temporal scales. Understanding and capturing the multiscale phenomena is critical for materials modeling and can be pursued both by physical simulation-based modeling as well as data-driven machine learning-based modeling. In this work, we build machine learning-based data models as surrogate models for approximating the microscale elastic response as a function of the material microstructure (also called the elastic localization linkage). In building these surrogate models, we particularly focus on understanding the role of contexts, as a link to the higher scale information that most evidently influences and determines the microscale response. As a result of context modeling, we find that machine learning systems with context awareness not only outperform previous best results, but also extend the parallelism of model training so as to maximize the computational efficiency.

4.
Sci Rep ; 5: 11551, 2015 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-26100717

RESUMEN

This paper addresses an important materials engineering question: How can one identify the complete space (or as much of it as possible) of microstructures that are theoretically predicted to yield the desired combination of properties demanded by a selected application? We present a problem involving design of magnetoelastic Fe-Ga alloy microstructure for enhanced elastic, plastic and magnetostrictive properties. While theoretical models for computing properties given the microstructure are known for this alloy, inversion of these relationships to obtain microstructures that lead to desired properties is challenging, primarily due to the high dimensionality of microstructure space, multi-objective design requirement and non-uniqueness of solutions. These challenges render traditional search-based optimization methods incompetent in terms of both searching efficiency and result optimality. In this paper, a route to address these challenges using a machine learning methodology is proposed. A systematic framework consisting of random data generation, feature selection and classification algorithms is developed. Experiments with five design problems that involve identification of microstructures that satisfy both linear and nonlinear property constraints show that our framework outperforms traditional optimization methods with the average running time reduced by as much as 80% and with optimality that would not be achieved otherwise.

5.
Integr Mater Manuf Innov ; 4(1): 192-208, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-31523612

RESUMEN

There has been a growing recognition of the opportunities afforded by advanced data science and informatics approaches in addressing the computational demands of modeling and simulation of multiscale materials science phenomena. More specifically, the mining of microstructure-property relationships by various methods in machine learning and data mining opens exciting new opportunities that can potentially result in a fast and efficient material design. This work explores and presents multiple viable approaches for computationally efficient predictions of the microscale elastic strain fields in a three-dimensional (3-D) voxel-based microstructure volume element (MVE). Advanced concepts in machine learning and data mining, including feature extraction, feature ranking and selection, and regression modeling, are explored as data experiments. Improvements are demonstrated in a gradually escalated fashion achieved by (1) feature descriptors introduced to represent voxel neighborhood characteristics, (2) a reduced set of descriptors with top importance, and (3) an ensemble-based regression technique.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA