Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202414728, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39301835

RESUMEN

Aqueous Zn-ion batteries (ZIBs) have attracted attention for grid applications due to their cost-effectiveness and high security. However, their lifespan decreases at high temperatures due to declining interfacial stability and increased side reactions. To address these challenges, a ternary deep eutectic solvent-based flexible electrolyte, comprised of ZnClO4·6H2O, butanedinitrile (BD), and LiCl in an amphoteric polymer matrix, was developed to enable wide-temperature ZIBs working from -20 °C to 70 °C. The interactions among BD, Li+, and zinc hydrate alongside the amphoteric groups on the polyelectrolyte matrix could effectively suppress the interfacial side reactions and Zn dendrites formation. Consequently, the symmetric Zn cell demonstrates exceptional stability across a wide-temperature range, with the ability to survive up to 2780 hours (1 mA·cm-2) at 50 °C. Furthermore, the flexible Zn||PANI battery can operate stably over 1000 cycles at 50 °C, boasting an initial specific capacity of 124.8 mAh·g-1 and capacity retention rate of 87.9% (3 A·g-1). This work presents an effective strategy for designing high-stability energy storage devices with excellent security features that can function reliably across diverse temperature conditions.

2.
Small Methods ; : e2400470, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38818740

RESUMEN

Large amounts of small molecule dyes leak into the ecosystems annually in harmful and unsustainable ways. Polymer dyes have attracted much attention because of their high migration resistance, excellent stability, and minimized leakage. However, the complex synthesis process, high cost, and poor degradability hinder their widespread application. Herein, green and sustainable polymer dyes are prepared using natural dye quercetin (Qc) and CO2 through a one-step process. The CO2-sourced polymer dyes show strong migration resistance, high stability, and can be degraded on demand. Additionally, the CO2-sourced polymer dyes showed unique responses to Zn2+, leading to significantly enhanced fluorescence, highlighting their potential for information encryption/decryption. The CO2-sourced polymer dyes can solve the environmental hazards caused by small molecule dye leakage and promote the carbon cycle process. Meanwhile, the one-step synthesis process is expected to achieve sustainable and widespread utilization of CO2-sourced polymer dyes.

3.
Angew Chem Int Ed Engl ; 63(14): e202317944, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38332681

RESUMEN

Electrochromic batteries as emerging smart energy devices are highly sought after owing to their real-time energy monitoring through visual color conversion. However, their large-scale applicability is hindered by insufficient capacity, inadequate cycling stability, and limited color variation. Herein, a flexible Zn-ion electrochromic battery (ZIEB) was assembled with sodium vanadate (VONa+) cathode, ion-redistributing hydrogel electrolyte, and Zn anode to address these challenges. The electrolyte contains anchored -SO3 - and -NH3 +, which facilitates ionic transportation and prevents Zn dendrite formation by promoting orientated Zn2+ deposition on the Zn (002) surface. The ZIEB exhibits a continuous reversible color transition, ranging from fully charged orange to mid-charged brown and drained green. It also demonstrates a high specific capacity of 302.4 mAh ⋅ g-1 at 0.05 A ⋅ g-1 with a capacity retention of 96.3 % after 500 cycles at 3 A ⋅ g-1. Additionally, the ZIEB maintains stable energy output even under bending, rolling, knotting, and twisting. This work paves a new strategy for the design of smart energy devices in wearable electronics.

4.
Adv Mater ; 36(16): e2312906, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38207115

RESUMEN

Polyurea (PUa) adhesives are renowned for their exceptional adhesion to diverse substrates even in harsh environments. However, the presence of quadruple bidentate intermolecular hydrogen bonds in the polymer chains creates a trade-off between cohesive energy and interfacial adhesive energy. To overcome this challenge, a series of CO2-sourced ionic PUa adhesives with ultratough adhesion to various substrates are developed. The incorporated ionic segments within the adhesive serve to partially mitigate the intermolecular hydrogen bonding interactions while conferring unique electrostatic interactions, leading to both high cohesive energy and interfacial adhesive energy. The maximum adhesive strength of 10.9 MPa can be attained by ionizing the CO2-sourced PUa using bromopropane and subsequently exchanging the anion with lithium bis(trifluoromethylsulfonyl)imide. Additionally, these ionic PUa adhesives demonstrate several desirable properties such as low-temperature stability (-80 °C), resistance to organic solvents and water, high flame retardancy, antibacterial activity, and UV-fluorescence, thereby expanding their potential applications. This study presents a general and effective approach for designing high-strength adhesives suitable for a wide array of uses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA