Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 456: 131717, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37245369

RESUMEN

Herein, L-cysteine (Cys) was modified on zero-valent iron (C-ZVIbm) by using a mechanical ball-milling method to improve the surface functionality and the Cr(VI) removal efficiency. Characterization results indicated that Cys was modified on the surface of ZVI by the specific adsorption of Cys on the oxide shell to form a -COO-Fe complex. The Cr(VI) removal efficiency of C-ZVIbm (99.6%) was much higher than that of ZVIbm (7.3%) in 30 min. The attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) analysis inferred that Cr(VI) was more likely to be adsorbed on the surface of C-ZVIbm to form bidentate binuclear inner-sphere complexes. The adsorption process was well-matched to the Freundlich isotherm and the pseudo-second-order kinetic model. Electrochemical analysis and electron paramagnetic resonance (ESR) spectroscopy revealed that Cys on the C-ZVIbm lowered the redox potential of Fe(III)/Fe(II), and favored the surface Fe(III)/Fe(II) cycling mediated by the electrons from Fe0 core. These electron transfer processes were beneficial to the surface reduction of Cr(VI) to Cr(III). Our findings provide new understandings into the surface modification of ZVI with a low-molecular weight amino acid to promote in-situ Fe(III)/Fe(II) cycling, and have great potential for the construction of efficient systems for Cr(VI) removal.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA