Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Microb Cell Fact ; 23(1): 171, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38867280

RESUMEN

BACKGROUND: Fibroblast growth factor 21 (FGF21) is a promising candidate for treating metabolic disorder diseases and has been used in phase II clinical trials. Currently, metabolic diseases are prevalent worldwide, underscoring the significant market potential of FGF21. Therefore, the production of FGF21 must be effectively improved to meet market demand. RESULTS: Herein, to investigate the impact of vectors and host cells on FGF21 expression, we successfully engineered strains that exhibit a high yield of FGF21. Surprisingly, the data revealed that vectors with various copy numbers significantly impact the expression of FGF21, and the results showed a 4.35-fold increase in expression levels. Furthermore, the performance of the double promoter and tandem gene expression construction design surpassed that of the conventional construction method, with a maximum difference of 2.67 times. CONCLUSION: By exploring engineered vectors and host cells, we successfully achieved high-yield production of the FGF21 strain. This breakthrough lays a solid foundation for the future industrialization of FGF21. Additionally, FGF21 can be easily, quickly and efficiently expressed, providing a better tool and platform for the research and application of more recombinant proteins.


Asunto(s)
Factores de Crecimiento de Fibroblastos , Vectores Genéticos , Regiones Promotoras Genéticas , Proteínas Recombinantes , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Vectores Genéticos/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Expresión Génica
2.
Bioengineering (Basel) ; 8(1)2021 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-33477926

RESUMEN

Synthetic biology allows the re-engineering of biological systems and promotes the development of bioengineering to a whole new level, showing great potential in biomanufacturing. Here, in order to make the heterologous lycopene biosynthesis pathway compatible with the host strain YSy 200, we evolved YSy200 using a unique Synthetic Chromosome Rearrangement and Modification by LoxP-mediated Evolution (SCRaMbLE) system that is built in the Sc2.0 synthetic yeast. By inducing SCRaMbLE, we successfully identified a host strain YSy201 that can be served as a suitable host to maintain the heterologous lycopene biosynthesis pathway. Then, we optimized the lycopene biosynthesis pathway and further integrated into the rDNA arrays of YSy201 to increase its copy number. In combination with culturing condition optimization, we successfully screened out the final yeast strain YSy222, which showed a 129.5-fold increase of lycopene yield in comparison with its parental strain. Our work shows that, the strategy of combining the engineering efforts on both the lycopene biosynthesis pathway and the host strain can improve the compatibility between the heterologous pathway and the host strain, which can further effectively increase the yield of the target product.

3.
Front Oncol ; 10: 561341, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33194628

RESUMEN

Precision medicine has been getting more attention in lung cancer treatment. Here, we report an unusual case of a 71-year-old Chinese male patient with poorly differentiated lung adenocarcinoma with lymph node metastasis. A 5 years' treatment history of this patient is reported. By serial genetic tests of circulating tumor DNA (ctDNA) from peripheral blood and sediment cell genomic DNA (PE-sDNA) from pleural effusion, a novel chronological combination treatment of icotinib, osimertinib, and crizotinib was adopted for the present genetic mutations, including EGFR exon 19 deletion, EGFR p.T790M, and MET amplification.

4.
Gigascience ; 8(6)2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-31220251

RESUMEN

The information explosion has led to a rapid increase in the amount of data requiring physical storage. However, in the near future, existing storage methods (i.e., magnetic and optical media) will be insufficient to store these exponentially growing data. Therefore, data scientists are continually looking for better, more stable, and space-efficient alternatives to store these huge datasets. Because of its unique biological properties, highly condensed DNA has great potential to become a storage material for the future. Indeed, DNA-based data storage has recently emerged as a promising approach for long-term digital information storage. This review summarizes state-of-the-art methods, including digital-to-DNA coding schemes and the media types used in DNA-based data storage, and provides an overview of recent progress achieved in this field and its exciting future.


Asunto(s)
ADN , Almacenamiento y Recuperación de la Información/métodos
5.
Nat Commun ; 9(1): 1936, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29789543

RESUMEN

Exogenous pathway optimization and chassis engineering are two crucial methods for heterologous pathway expression. The two methods are normally carried out step-wise and in a trial-and-error manner. Here we report a recombinase-based combinatorial method (termed "SCRaMbLE-in") to tackle both challenges simultaneously. SCRaMbLE-in includes an in vitro recombinase toolkit to rapidly prototype and diversify gene expression at the pathway level and an in vivo genome reshuffling system to integrate assembled pathways into the synthetic yeast genome while combinatorially causing massive genome rearrangements in the host chassis. A set of loxP mutant pairs was identified to maximize the efficiency of the in vitro diversification. Exemplar pathways of ß-carotene and violacein were successfully assembled, diversified, and integrated using this SCRaMbLE-in method. High-throughput sequencing was performed on selected engineered strains to reveal the resulting genotype-to-phenotype relationships. The SCRaMbLE-in method proves to be a rapid, efficient, and universal method to fast track the cycle of engineering biology.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Genes Sintéticos , Ingeniería Genética/métodos , Genoma Fúngico , Saccharomyces cerevisiae/genética , Biología Sintética/métodos , Secuencia de Bases , Cromosomas Fúngicos/química , Estudios de Asociación Genética , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Indoles/metabolismo , Integrasas/genética , Integrasas/metabolismo , Redes y Vías Metabólicas/genética , Fenotipo , Plásmidos/química , Plásmidos/metabolismo , Recombinación Genética , Saccharomyces cerevisiae/metabolismo , beta Caroteno/biosíntesis , beta Caroteno/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA