Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Macro Lett ; 13(6): 788-797, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38838345

RESUMEN

Quantifying adhesion is crucial for understanding adhesion mechanisms and developing advanced dopamine-inspired materials and devices. However, achieving nondestructive and real-time quantitation of adhesion using optical spectra remains challenging. Here, we present a dopamine-inspired orthogonal phenanthrenequinone photochemistry strategy for the one-step adhesion and real-time visual quantitation of fluorescent spectra. This strategy utilizes phenanthrenequinone-mediated photochemistry to facilitate conjoined network formation in the adhesive through simultaneous photoclick cycloaddition and free-radical polymerization. The resulting hydrogel-like adhesive exhibits good mechanical performance, with a Young's modulus of 300 kPa, a toughness of 750 kJ m-3, and a fracture energy of 4500 J m-2. This adhesive, along with polycyclic aromatic phenanthrenequinones, shows strong adhesion (>100 kPa) and interfacial toughness thresholds (250 J m-2) on diverse surfaces─twice to triple as much as typical dopamine-contained adhesives. Importantly, such an adhesive demonstrates excellent fluorescent performance under UV irradiation, closely correlating with its adhesion strengths. Their fluorescence intensities remain constant after continuous stretching/releasing treatment and even in the dried state. Therefore, this dopamine-inspired orthogonal phenanthrenequinone photochemistry is readily available for real-time and nondestructive visual quantitation of adhesion performance under various conditions. Moreover, the adhesive precursor is chemically ultrastable for more than seven months and achieves adhesion on substrates within seconds upon blue light irradiation. As a proof-of-concept, we leverage the rapid and visual quantitation of adhesion and printability to create fluorescent patterns and structures, showcasing applications in information storage, adhesion prediction, and self-reporting properties. This general and straightforward strategy holds promise for rapidly preparing functional adhesive materials and designing high-performance wearable devices.

2.
ACS Macro Lett ; 13(6): 664-672, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38755098

RESUMEN

Dynamic covalent hydrogels are gaining attention for their potential in smart materials, soft devices, electronics, and more thanks to their impressive mechanical properties, biomimetic structures, and dynamic behavior. However, a significant challenge lies in designing precise and efficient dynamic photochemistry for their preparation, allowing for complex structures and control over the dynamic process. Herein, we propose a general and straightforward orthogonal dynamic covalent photochemistry strategy for preparing high-performance printable dynamic covalent hydrogels, thereby broadening their advanced applications. This photochemical strategy uses a bifunctional photocatalyst to initiate radical polymerization and release ligands through a rapid light-mediated dissociation mechanism. This process leads to a controlled increase in system pH from mildly acidic to alkaline conditions within one hundred seconds, which in turn triggers the pH-sensitive model reactions of boronic acid/diol complexation and Knoevenagel condensation. The orthogonal photochemistry enables the formation of interpenetrated and conjoined networks, significantly enhancing the mechanical properties of the hydrogels. The reversible bonds formed during the process, i.e., boronic ester and unsaturated ketone bonds, confer excellent self-healing, reprocessable, and recyclable properties on the hydrogels through photochemical pH variations. Furthermore, this rapid, controlled fabrication process and dynamic behavior are highly compatible with printing techniques, enabling the design of adaptive and recyclable sensors with different structures. These advancements are promising for various material science, medicine, and engineering applications.

3.
Artículo en Inglés | MEDLINE | ID: mdl-36893430

RESUMEN

Hydrogels have demonstrated wide applications in tissue engineering, but it is still challenging to develop strong, customizable, low-friction artificial scaffolds. Here, we report a rapid orthogonal photoreactive 3D-printing (ROP3P) strategy to achieve the design of high-performance hydrogels in tens of minutes. The orthogonal ruthenium chemistry enables the formation of multinetworks in hydrogels via phenol-coupling reaction and traditional radical polymerization. Further Ca2+-cross-linking treatment greatly improves their mechanical properties (6.4 MPa at a critical strain of 300%) and toughness (10.85 MJ m-3). The tribological investigation reveals that the high elastic moduli of the as-prepared hydrogels improve their lubrication (∼0.02) and wear-resistance performances. These hydrogels are biocompatible and nontoxic and promote bone marrow mesenchymal stem cell adhesion and propagation. The introduction of 1-hydroxy-3-(acryloylamino)-1,1-propanediylbisphosphonic acid units can greatly enhance their antibacterial property to kill typical Escherichia coli and Staphylococcus aureus. Moreover, the rapid ROP3P can achieve hydrogel preparation in several seconds and is readily compatible with making artificial meniscus scaffolds. The printed meniscus-like materials are mechanically stable and can maintain their shape under long-term gliding tests. It is anticipated that these high-performance customizable low-friction tough hydrogels and the highly efficient ROP3P strategy could promote further development and practical applications of hydrogels in biomimetic tissue engineering, materials chemistry, bioelectronics, and so on.

4.
ACS Macro Lett ; 12(4): 433-439, 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-36930947

RESUMEN

Conductive hydrogels are promising material candidates in fields ranging from flexible sensors and electronic skin applications to personalized medical monitoring. However, developing intrinsically conductive polymer hydrogels (ICPHs) with high mechanical properties and excellent printability is still challenging. Here, we introduce a simultaneous polymerization acceleration and mechanical enhancement (SPAME) strategy to construct PEDOT-based ICPHs via the rational design of coordinative and orthogonal ruthenium photochemistry (CORP). This orthogonal photochemistry triggers the oxidative polymerization of EDOT and the coupling of phenols within seconds under blue light irradiation. Benefiting from the bifunctional EDTA-Fe design, the photoreleased Fe(III) accelerated the EDOT polymerization and shortened the preparation time of ICPHs to a few seconds. At the same time, the addition of EDTA-Fe enhanced their mechanical properties, and both the critical strains and maximum stresses of the hydrogel doubled. Furthermore, the introduction of phenol residues in PAA-Ph significantly shortened the gelation time from several minutes to about 7 s. Thus, this fast and controllable CORP chemistry is compatible with standard printing techniques for engineering hydrogels for complex multifunctional structures for multifunctional bioelectronics and devices.

5.
Artículo en Inglés | MEDLINE | ID: mdl-36753682

RESUMEN

Natural and biocompatible chitosan has demonstrated wide applications. However, rapidly fabricating high-performance chitosan hydrogels in one-step controllable processes is still a challenge for some advanced applications. Here, we report a trifunctional microgel-mediated photochemical (TMMP) strategy to achieve the fabrication of printable tough chitosan-based hydrogels (PTCHs) in seconds. Such microgels help the slow release of persulfate anions and their uniform dispersion in an aqueous solution of cationic chitosan. The released persulfates are available for preparing multiple networks of phenolic coupling of modified chitosan and radical polymerization of Pluronic F127 via orthogonal tris(bipyridine)ruthenium(II)-based photochemistry, respectively. Trifunctional microgels have reversible Ca2+-crosslinked networks that further improve the hydrogels' mechanical properties and toughness. The maximum stress and toughness increase by >20 folds compared to the chitosan and F127 hydrogels with single network structures. Moreover, these microgels enable the precursor to have a good shearing-thinning property and benefit the controllable preparation of PTCHs in a short time, as low as ∼4 s under visible light irradiation. It, therefore, is compatible with standard printing techniques to make complex structures. Strain sensors based on structured PTCHs have stable mechanical and responsive properties in the water, which are applied for real-time underwater communications (<0.4 s). It is anticipated that this one-step TMMP strategy opens new horizons for designing advanced chitosan hydrogels.

6.
ACS Nano ; 16(11): 17998-18008, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36136126

RESUMEN

Conductive polymers have many advanced applications, but there is still an important target in developing a general and straightforward strategy for printable, mechanically stable, and durable organohydrogels with typical conducting polymers of, for example, polypyrrole, polyaniline, or poly(3,4-ethylenedioxythiophene). Here we report a protein crystallization-mediated self-strengthening strategy to fabricate printable conducting organohydrogels with the combination of rational photochemistry design. Such organohydrogels are one-step prepared via rapidly and orthogonally controllable photopolymerizations of pyrroles and gelatin protein in tens of seconds. As-prepared conducting organohydrogels are patterned and printed to complicated structures via shadow-mask lithography and 3D extrusion technology. The mild photocatalytic system gives the transition metal carbide/nitride (MXene) component high stability during the oxidative preparation process and storage. Controlling water evaporation promotes gelatin crystallization in the as-prepared organohydrogels that significantly self-strengthens their mechanical property and stability in a broad temperature range and durability against continuous friction treatment without introducing guest functional materials. Also, these organohydrogels have commercially electromagnetic shielding, thermal conducting properties, and temperature- and light-responsibility. To further demonstrate the merits of this simple strategy and as-prepared organohydrogels, prism arrays, as proofs-of-concept, are printed and applied to make wearable triboelectric nanogenerators. This self-strengthening process and 3D-printability can greatly improve their voltage, charge, and current output performances compared to the undried and flat samples.


Asunto(s)
Gelatina , Polímeros , Cristalización , Polímeros/química , Pirroles/química , Hidrogeles/química
7.
ACS Macro Lett ; 11(8): 967-974, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35830546

RESUMEN

Metal-organic coordination is widely applied for designing responsive polymers and soft devices. But it is still a challenge to prepare redox-responsive actuators with complicated structures, limiting their advanced applications in material and engineering fields. Here, we report a photoredox-mediated designing and regulating strategy to fabricate metal-coordinate hydrogels with the catalysis of Ru(II)/Co(III) under visible-light irradiation in seconds. Meanwhile, multiple polymer networks are formed and penetrated by each other, enabling as-prepared hydrogels excellent mechanical properties and toughness. This rapid, one-step, and controllable process is highly compatible with standard photography and printing techniques to make hierarchical 2D/3D structures. Importantly, the oxidization decomposition of Co(III) benefits the formation of cobalt cation-based redox-responsive networks, which have the potential for designing shape-memory materials and actuators by the regulation of Co3+/2+ states via tuning redox environmental conditions. As a proof-of-concept, a programmable air-driven actuator is successfully demonstrated to control cargo capturing/releasing by designing complicated, asymmetric structures and optimizing their performance with the combination of a typical extrusion 3D printing approach. In this Letter, we report a simple and general metal-organic coordination strategy for designing high-performance actuators, which shows promising applications in smart soft devices and electronics.


Asunto(s)
Hidrogeles , Polímeros , Electrónica , Hidrogeles/química , Polímeros/química , Impresión Tridimensional
8.
ACS Nano ; 16(3): 4734-4745, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35225602

RESUMEN

Biomineralized tough hydrogels (BTHs) have advanced applications in the fields of soft bioelectronics and biomimetic tissue engineering. But the development of rapid and general photomineralization strategies for one-step fabrication of customizable BTHs is still a challenging task. Here we report a straightforward, low-cost visible-light-mediated nano-biomineralization (VLMNB) strategy via a rational design of a phosphate source and efficient ruthenium photochemistry. Multinetwork tough hydrogels are simultaneously constructed under the same condition. Therefore, BTHs are rapidly prepared in a short time as low as ∼60 s under visible light irradiation. The in situ formation of calcium phosphate particles can improve BTHs' mechanical and biological properties and reduce the friction coefficient with bones. Furthermore, fast biomineralization and solidification processes in these BTHs benefit their injectable and highly flexible customizable design, showing applications of promoting customizable skin repair and bone regeneration.


Asunto(s)
Hidrogeles , Ingeniería de Tejidos , Biomimética , Biomineralización , Hidrogeles/química , Luz
9.
Chem Sci ; 11(31): 8224-8230, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-34123092

RESUMEN

Mimicking the superstructures and functions of natural chiral materials is beneficial to understand specific biological activities in living organisms and broaden applications in the fields of chemistry and materials sciences. However, it is still a great challenge to construct water-soluble, double-helical polymers with multiple responsiveness. Herein, we report for the first time a straightforward, general strategy to address this issue by taking advantage of Passerini multicomponent polymerization-induced assembly (PMPIA). The polymerization-induced generation of supramolecular interactions in chiral α-acyloxy amides drives the assembly of polymers and improves their stability in various solvents. This double-helical polymer is sensitive to metal ions, temperature, pH, and solvents, making both the superstructure and the AIE effect reversibly adjustable. Meanwhile, the hydrogen-bonding-assisted cyclization of photolabile α-acyloxy amides accelerates the degradation of helical polymers under visible-light irradiation. It is anticipated that this novel PMPIA strategy opens new horizons to inspire the design of advanced chiral/helical polymers with multiple functions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA