Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Insect Sci ; 23(3)2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37256698

RESUMEN

The tachinid fly, Exorista sorbillans, is a notorious ovolarviparous endoparasitoid of the silkworm, Bombyx mori, causing severe damage to silkworm cocoon industry. Silkworm larvae show typically precocious wandering behavior after being parasitized by E. sorbillans; however, the underlying molecular mechanism remains unexplored. Herein, we investigated the changes in the levels of 20-hydroxyecdysone (20E) and juvenile hormone (JH) titer, and they both increased in the hemolymph of parasitized silkworms. Furthermore, we verified the expression patterns of related genes, which showed an upregulation of 20E signaling and biosynthesis genes but a significant downregulation of ecdysone oxidase (EO), a 20E inactivation enzyme, in parasitized silkworms. In addition, related genes of the JH signaling were activated in parasitized silkworms, while related genes of the JH degradation pathway were suppressed, resulting in an increase in JH titer. Notably, the precocious wandering behavior of parasitized silkworms was partly recoverable by silencing the transcriptions of BmCYP302A1 or BmCYP307A1 genes. Our findings suggest that the developmental duration of silkworm post parasitism could be shortened by regulation of 20E and JH titers, which may help silkworm to resist the E. sorbillans infestation. These findings provide a basis for deeper insight into the interplay between silkworms and E. sorbillans and may serve as a reference for the development of a novel approach to control silkworm myiasis.


Asunto(s)
Bombyx , Dípteros , Lepidópteros , Manduca , Animales , Dípteros/metabolismo , Larva , Ecdisona/metabolismo , Lepidópteros/metabolismo , Hormonas Juveniles/metabolismo
2.
Pharmaceutics ; 14(11)2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36365102

RESUMEN

The cell membrane, as the protecting frontier of cells, is closely related to crucial biological behaviors including cell growth, death, and division. Lots of fluorescent probes have been fabricated to monitor cell membranes due to their simplicity and intuitiveness. However, the efficiency of those traditional probes has been limited by their susceptibility to photobleaching and poor water solubility. In this study, we have reported Ru(II)-coumarin complexes consisting of ruthenium, 1,10-phenanthroline, and coumarin 6 to further form self-assembled nanoprobes, for cell membrane targeting and imaging. The fluorescent property could be switchable from red to green through the dynamic disassembly of nanoprobes. Compared with commercial Dil, biocompatible nanoprobes exhibited superior stability for long-term cell imaging, along with remarkedly reduced background interference. Therefore, our self-assembled nanoprobe provides a powerful solution for investigating lipid trafficking with optical imaging.

3.
IEEE Trans Cybern ; 52(4): 2284-2299, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32673199

RESUMEN

The multidimensional knapsack problem (MKP) is a well-known combinatorial optimization problem with many real-life applications. In this article, a memetic algorithm based on probability learning (MA/PL) is proposed to solve MKP. The main highlights of this article are two-fold: 1) problem-dependent heuristics for MKP and 2) a novel framework of MA/PL. For the problem-dependent heuristics, we first propose two kinds of logarithmic utility functions (LUFs) based on the special structure of MKP, in which the profit value and weight vector of each item are considered simultaneously. Then, LUFs are applied to effectively guide the repair operator for infeasible solutions and the local search operator. For the framework of MA/PL, we propose two problem-dependent probability distributions to extract the special knowledge of MKP, that is, the marginal probability distribution (MPD) of each item and the joint probability distribution (JPD) of two conjoint items. Next, learning rules for MPD and JPD, which borrow ideas from competitive learning and binary Markov chain, are proposed. Thereafter, we generate MA/PL's offspring by integrating MPD and JPD, such that the univariate probability information of each item as well as the dependency of conjoint items can be sufficiently used. Results of experiments on 179 benchmark instances and a real-life case study demonstrate the effectiveness and practical values of the proposed MKP.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA