Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cells ; 13(9)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38727316

RESUMEN

Epithelial-mesenchymal transition (EMT) is a process during which epithelial cells lose epithelial characteristics and gain mesenchymal features. Here, we used several cell models to study migratory activity and redistribution of cell-cell adhesion proteins in cells in different EMT states: EGF-induced EMT of epithelial IAR-20 cells; IAR-6-1 cells with a hybrid epithelial-mesenchymal phenotype; and their more mesenchymal derivatives, IAR-6-1-DNE cells lacking adherens junctions. In migrating cells, the cell-cell adhesion protein α-catenin accumulated at the leading edges along with ArpC2/p34 and α-actinin. Suppression of α-catenin shifted cell morphology from fibroblast-like to discoid and attenuated cell migration. Expression of exogenous α-catenin in MDA-MB-468 cells devoid of α-catenin drastically increased their migratory capabilities. The Y654 phosphorylated form of ß-catenin was detected at integrin adhesion complexes (IACs). Co-immunoprecipitation studies indicated that α-catenin and pY654-ß-catenin were associated with IAC proteins: vinculin, zyxin, and α-actinin. Taken together, these data suggest that in cells undergoing EMT, catenins not participating in assembly of adherens junctions may affect cell migration.


Asunto(s)
Citoesqueleto de Actina , Movimiento Celular , Transición Epitelial-Mesenquimal , Animales , Citoesqueleto de Actina/metabolismo , Actinina/metabolismo , Uniones Adherentes/metabolismo , alfa Catenina/metabolismo , beta Catenina/metabolismo , Adhesión Celular , Línea Celular Tumoral , Células Epiteliales/metabolismo , Integrinas/metabolismo , Fosforilación , Vinculina/metabolismo , Zixina/metabolismo , Ratas
2.
Biochemistry (Mosc) ; 88(1): 22-34, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37068870

RESUMEN

Cancer cells use the program of epithelial-mesenchymal transition (EMT) for initiation of the invasion-metastasis cascade. Using confocal and video-microscopy, reorganization of the cytoskeleton was studied in the MCF-7 breast cancer cells undergoing Snail1-induced EMT. We used the line of MCF-7 cells stably expressing tetOff SNAI1 construct (MCF-7-SNAI1 cells). After tetracycline washout and Snail1 activation MCF-7-SNAI1 cells underwent EMT and acquired a migratory phenotype while retaining expression of E-cadherin. We identified five variants of the mesenchymal phenotype, differing in cell morphology and migration velocity. Migrating cells had high degree of plasticity, which allowed them to quickly change both the phenotype and migration velocity. The changes of the phenotype of MCF-7-SNAI1 cells are based on the Arp2/3-mediated branched actin network polymerization in lamellipodia, myosin-based contractility in the zone behind the nucleus, redistribution of adhesive proteins from cell-cell contacts to the leading edge, and reorganization of intermediate keratin filaments.


Asunto(s)
Neoplasias de la Mama , Transición Epitelial-Mesenquimal , Factores de Transcripción de la Familia Snail , Factores de Transcripción , Cadherinas/genética , Cadherinas/metabolismo , Movimiento Celular , Factores de Transcripción de la Familia Snail/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Humanos , Neoplasias de la Mama/patología , Células MCF-7
3.
Cells ; 9(3)2020 02 29.
Artículo en Inglés | MEDLINE | ID: mdl-32121325

RESUMEN

Epithelial-mesenchymal transition (EMT) plays an important role in development and also in initiation of metastasis during cancer. Disruption of cell-cell contacts during EMT allowing cells to detach from and migrate away from their neighbors remains poorly understood. Using immunofluorescent staining and live-cell imaging, we analyzed early events during EMT induced by epidermal growth factor (EGF) in IAR-20 normal epithelial cells. Control cells demonstrated stable adherens junctions (AJs) and robust contact paralysis, whereas addition of EGF caused rapid dynamic changes at the cell-cell boundaries: fragmentation of the circumferential actin bundle, assembly of actin network in lamellipodia, and retrograde flow. Simultaneously, an actin-binding protein EPLIN was phosphorylated, which may have decreased the stability of the circumferential actin bundle. Addition of EGF caused gradual replacement of linear E-cadherin-based AJs with dynamic and unstable punctate AJs, which, unlike linear AJs, colocalized with the mechanosensitive protein zyxin, confirming generation of centripetal force at the sites of cell-cell contacts during EMT. Our data show that early EMT promotes heightened dynamics at the cell-cell boundaries-replacement of stable AJs and actin structures with dynamic ones-which results in overall weakening of cell-cell adhesion, thus priming the cells for front-rear polarization and eventual migration.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Cadherinas/metabolismo , Transición Epitelial-Mesenquimal/inmunología , Adhesión Celular , Humanos , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA