Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ann For Sci ; 79(1): 38, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36090538

RESUMEN

Key message: The core populations of the European white elm (Ulmus laevis Pall.) located in Poland maintained slightly higher level of genetic diversity compared to the peripheral populations of this species. Context: The most severe threat to elms is the loss of natural habitat under the pressures of agriculture and forestry as well as urbanization. The reductions in European white elm populations as well as populations of other elm species have also been caused by Dutch elm disease (DED). Previous studies have indicated a low level of genetic variation in Ulmus leavis Pall. However, in Poland, the genetic resources and demographic history of U. laevis populations remain poorly documented. Aims: The genetic resources of U. laevis in Poland were identified and characterized. Additionally, tests were performed to identify potential bottleneck signatures and effective population sizes of the examined populations. Methods: Polymorphism was analyzed using a set of six nuclear microsatellite markers (nSSRs) for 1672 individuals from 41 populations throughout the species range in Poland. Results: (1) A moderate level of genetic variation was found. (2) A low genetic differentiation and lack of population structuring were identified. (3) Evidence of reduction in population size was found as a consequence of severe, past bottlenecks. Conclusion: The loss of genetic diversity of U. laevis probably occurred in their refugia or shortly after the postglacial recolonization. This loss may have been affected by past DED pandemics similar to those seen at present.

2.
Cells ; 11(11)2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35681443

RESUMEN

Modifications of DNA nucleobases are present in all forms of life. The purpose of these modifications in eukaryotic cells, however, is not always clear. Although the role of 5-methylcytosine (m5C) in epigenetic regulation and the maintenance of stability in plant genomes is becoming better understood, knowledge pertaining to the origin and function of oxidized nucleobases is still scarce. The formation of 5-hydroxymetylcytosine (hm5C) in plant genomes is especially debatable. DNA modifications, functioning as regulatory factors or serving as DNA injury markers, may have an effect on DNA structure and the interaction of genomic DNA with proteins. Thus, these modifications can influence plant development and adaptation to environmental stress. Here, for the first time, the changes in DNA global levels of m5C, hm5C, and 8-oxo-7,8-dihydroguanine (8-oxoG) measured by ELISA have been documented in recalcitrant embryonic axes subjected to desiccation and accelerated aging. We demonstrated that tissue desiccation induces a similar trend in changes in the global level of hm5C and 8-oxoG, which may suggest that they both originate from the activity of reactive oxygen species (ROS). Our study supports the premise that m5C can serve as a marker of plant tissue viability whereas oxidized nucleobases, although indicating a cellular redox state, cannot.


Asunto(s)
Desecación , Semillas , Daño del ADN , ADN de Plantas/genética , ADN de Plantas/metabolismo , Epigénesis Genética , Genómica , Semillas/metabolismo
3.
Mycorrhiza ; 28(5-6): 467-475, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29766279

RESUMEN

Suillus lakei is an ectomycorrhizal fungus native to North America and known in Europe, South America, and New Zealand. This contribution aims to illustrate the worldwide biogeography of S. lakei based on sporocarp records. Species distribution modeling was used to assess the suitable niche distribution of S. lakei, based on the climatic variables as well as distribution of its ectomycorrhizal partner, Douglas fir. In general, distribution of suitable niches of S. lakei greatly overlaps with the distribution of Douglas fir in North America. By spatial distribution modeling, we found that the precipitation of the coldest quarters, isothermality, and annual mean temperature are important factors influencing the potential distribution of S. lakei. Nevertheless, the most crucial factor limiting expansion of S. lakei in its invasion range is Douglas fir occurrence. This factor reached an 86.4% contribution for the S. lakei species distribution model. Additionally, we compare the aboveground and belowground presence of S. lakei based on surveys in the field. Our study shows that even extremely low abundance of ectomycorrhizas can open the possibility of using an ectomycorrhiza survey for their quantification as a good indicator of the presence of S. lakei in field conditions. Both sporocarps and ectomycorrhizas occurred only in gardens, where Douglas fir seedlings were outplanted at the beginning of the 1990s as an ornamental plant. Presumably, international trade of ornamental plants was one possible route of introduction of S. lakei to Poland.


Asunto(s)
Clima , Especies Introducidas , Micorrizas/fisiología , Microbiología del Suelo , Micorrizas/genética , Filogeografía , Polonia , Pseudotsuga/microbiología , Plantones/microbiología
4.
AoB Plants ; 82016.
Artículo en Inglés | MEDLINE | ID: mdl-27497422

RESUMEN

Gene flow tends to have a homogenising effect on a species' background genetic variation over large geographical areas. However, it is usually unknown to what extent the genetic structure of populations is influenced by gene exchange between core and peripheral populations that may represent stands of different evolutionary and demographic history. In this study, we looked at the patterns of population differentiation in Scots pine-a highly outcrossing and wind pollinated conifer species that forms large ecosystems of great ecological and economic importance in Europe and Asia. A set of 13 polymorphic nuclear microsatellite loci was analysed to infer the genetic relationships among 24 populations (676 individuals) from Europe and Asia Minor. The study included specimens from the primary continuous range and from isolated, marginal stands that are considered to be autochthonous populations representative of the species' putative refugial areas. Despite their presumably different histories, a similar level of genetic variation and no evidence of a population bottleneck was found across the populations. Differentiation among populations was relatively low (average FST = 0.035); however, the population structure was not homogenous, which was clearly evident from the allelic frequency spectra and Bayesian assignment analysis. Significant differentiation over short geographical distances was observed between isolated populations within the Iberian and Anatolian Peninsulas (Asia Minor), which contrasted with the absence of genetic differentiation observed between distant populations e.g., between central and northern Europe. The analysed populations were assigned to several groups that corresponded to the geographical regions of their occurrence. These results will be useful in genetics studies in Scots pine that aim to link nucleotide and phenotypic variation across the species distribution range and for development of sustainable breeding and management programs.

5.
Plant Physiol Biochem ; 97: 246-54, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26492132

RESUMEN

A strong increase in the level of dehydrin/response ABA transcripts expression reported from the 14th week after flowering coincident with the accumulation of 26 and 44 kDa dehydrins in the embryonic axes of developing beech (Fagus sylvatica L.) seeds. Both transcript and protein levels were strongly correlated with maturation drying. These results suggest that the 44-kDa dehydrin protein is a putative dimer of dehydrin/response ABA protein migrating as a 26-kDa protein. Dehydrins and dehydrin-like proteins form large oligomeric complexes under native conditions and are shown as several spots differing in pI through isoelectrofocusing analyses. Detailed prediction of specific sites accessible for various post-translational modifications (PTMs) in the dehydrin/response ABA protein sequence revealed sites specific to acetylation, amidation, glycosylation, methylation, myristoylation, nitrosylation, O-linked ß-N-acetylglucosamination and Yin-O-Yang modification, palmitoylation, phosphorylation, sumoylation, sulfation, and ubiquitination. Thus, these results suggest that specific PTMs might play a role in switching dehydrin function or activity, water binding ability, protein-membrane interactions, transport and subcellular localization, interactions with targeted molecules, and protein stability. Despite the ability of two Cys residues to form a disulfide bond, -SH groups are likely not involved in dimer arrangement. His-rich regions and/or polyQ-tracts are potential candidates as spatial organization modulators. Dehydrin/response ABA protein is an intrinsically disordered protein containing low complexity regions. The lack of a fixed structure and exposition of amino acids on the surface of the protein structure enhances the accessibility to 40 predicted PTM sites, thereby facilitating dehydrin multifunctionality, which is discussed in the present study.


Asunto(s)
Simulación por Computador , Fagus/metabolismo , Proteínas de Plantas/metabolismo , Semillas/metabolismo , Secuencia de Aminoácidos , Electroforesis en Gel Bidimensional , Fagus/embriología , Fagus/genética , Regulación de la Expresión Génica de las Plantas , Oxidación-Reducción , Proteínas de Plantas/química , Proteínas de Plantas/genética , Procesamiento Proteico-Postraduccional , ARN Mensajero/genética , ARN Mensajero/metabolismo , Semillas/genética , Agua/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA