Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 12(1): 2724, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33976117

RESUMEN

It has long been anticipated that relating functional traits to species demography would be a cornerstone for achieving large-scale predictability of ecological systems. If such a relationship existed, species demography could be modeled only by measuring functional traits, transforming our ability to predict states and dynamics of species-rich communities with process-based community models. Here, we introduce a new method that links empirical functional traits with the demographic parameters of a process-based model by calibrating a transfer function through inverse modeling. As a case study, we parameterize a modified Lotka-Volterra model of a high-diversity mountain grassland with static plant community and functional trait data only. The calibrated trait-demography relationships are amenable to ecological interpretation, and lead to species abundances that fit well to the observed community structure. We conclude that our new method offers a general solution to bridge the divide between trait data and process-based models in species-rich ecosystems.


Asunto(s)
Ecosistema , Biodiversidad , Fenotipo , Plantas/clasificación , Plantas/genética
2.
Ecol Evol ; 11(9): 3746-3770, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33976773

RESUMEN

Understanding the processes that shape forest functioning, structure, and diversity remains challenging, although data on forest systems are being collected at a rapid pace and across scales. Forest models have a long history in bridging data with ecological knowledge and can simulate forest dynamics over spatio-temporal scales unreachable by most empirical investigations.We describe the development that different forest modelling communities have followed to underpin the leverage that simulation models offer for advancing our understanding of forest ecosystems.Using three widely applied but contrasting approaches - species distribution models, individual-based forest models, and dynamic global vegetation models - as examples, we show how scientific and technical advances have led models to transgress their initial objectives and limitations. We provide an overview of recent model applications on current important ecological topics and pinpoint ten key questions that could, and should, be tackled with forest models in the next decade.Synthesis. This overview shows that forest models, due to their complementarity and mutual enrichment, represent an invaluable toolkit to address a wide range of fundamental and applied ecological questions, hence fostering a deeper understanding of forest dynamics in the context of global change.

3.
Glob Chang Biol ; 25(12): 4048-4063, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31310430

RESUMEN

The European spruce bark beetle Ips typographus is the most important insect pest in Central European forests. Under climate change, its phenology is presumed to be changing and mass infestations becoming more likely. While several studies have investigated climate effects across a latitudinal gradient, it remains an open question how phenology will change depending on elevation and topology. Knowing how an altered climate is likely to affect bark beetle populations, particularly across diverse topographies and elevations, is essential for adaptive management. We developed a time-varying distributed delay model to predict the phenology of I. typographus. This approach has the particular advantage of capturing the variability within populations and thus representing its stage structure at any time. The model is applied for three regional climate change scenarios, A1B, A2 and RCP3PD, to the diverse topography of Switzerland, covering a large range of elevations, aspects and slopes. We found a strong negative relationship between voltinism and elevation. Under climate change, the model predicts an increasing number of generations over the whole elevational gradient, which will be more pronounced at low elevations. In contrast, the pre-shift in spring swarming is expected to be greater at higher elevations. In comparison, the general trend of faster beetle development on steep southern slopes is only of minor importance. Overall, the maximum elevation allowing a complete yearly generation will move upwards. Generally, the predicted increase in number of generations, earlier spring swarming, more aggregated swarming, together with a projected increase in drought and storm events, will result in a higher risk of mass infestations. This will increase the pressure on spruce stands particularly in the lowlands and require intensified management efforts. It calls for adapted long-term silvicultural strategies to mitigate the loss of ecosystem services such as timber production protection against rockfall and avalanches and carbon storage.


Asunto(s)
Escarabajos , Picea , Animales , Cambio Climático , Ecosistema , Corteza de la Planta , Suiza
4.
Theor Popul Biol ; 115: 24-34, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28232111

RESUMEN

One way to explore assembly of extant and novel communities from species pools, and by that biodiversity and species ranges, is to study the equilibrium behavior of dynamic competition models such as the Lotka-Volterra competition (LVC) model. We present a novel method (COMMUSTIX) to determine all stable fixpoints of the general LVC model with abundances x from a given pool of n species. To that purpose, we split the species in potentially surviving species (xi>0) and in others going extinct (xi=0). We derived criteria for the stability of xi=0 and for the equilibrium of xi>0 to determine possible combinations of extinct and surviving species by iteratively applying a mixed binary linear optimization algorithm. We tested this new method against (a) the numerical solution at equilibrium of the LVC ordinary differential equations (ODEs) and (b) the fixpoints of all combinations of surviving and extinct species (possible only for small n), tested for stability and non-negativity. The tests revealed that COMMUSTIX is reliable, it detects all multiple stable fixpoints (SFPs), which is not guaranteed by solving the ODEs, and more efficient than the combinations method. With COMMUSTIX, we studied the dependence of the fixpoint behavior on the competition strengths relative to the intra-specific competition. If inter-specific competition was considerably lower than intra-specific competition, only globally SFPs occurred. In contrast, if all inter-specific was higher than intra-specific competition, multiple SFPs consisting of only one species occurred. If competition strengths in the species pool ranged from below to above the intra-specific competition, either global or multiple SFPs strongly differing in species composition occurred. The species richness over all SFPs was high for pools of species with similar, either weak or strong competition, and lower for species with dissimilar or close to intra-specific competition strengths. The new approach is a reliable and efficient tool for further extensive examinations of the dependence of community compositions on parameter settings of the LVC model.


Asunto(s)
Biodiversidad , Evolución Biológica , Conducta Social , Ecología , Ecosistema , Modelos Biológicos
5.
PLoS One ; 8(11): e80443, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24260391

RESUMEN

A major unknown in the context of current climate change is the extent to which populations of slowly migrating species, such as trees, will track shifting climates. Niche modelling generally predicts substantial northward shifts of suitable habitats. There is therefore an urgent need for field-based forest observations to corroborate these extensive model simulations. We used forest inventory data providing presence/absence information from just over a century (1880-2010) for a Mediterranean species (Quercus ilex) in forests located at the northern edge of its distribution. The main goals of the study were (i) to investigate whether this species has actually spread into new areas during the Anthropocene period and (ii) to provide a direct estimation of tree migration rate. We show that Q. ilex has colonised substantial new areas over the last century. However, the maximum rate of colonisation by this species (22 to 57 m/year) was much slower than predicted by the models and necessary to follow changes in habitat suitability since 1880. Our results suggest that the rates of tree dispersion and establishment may also be too low to track shifts in bioclimatic envelopes in the future. The inclusion of contemporary, rather than historical, migration rates into models should improve our understanding of the response of species to climate change.


Asunto(s)
Quercus/fisiología , Clima , Cambio Climático , Ecosistema , Modelos Teóricos , Estudios Retrospectivos , Árboles/fisiología
6.
PLoS One ; 8(8): e71797, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23990991

RESUMEN

Faster-than-expected post-glacial migration rates of trees have puzzled ecologists for a long time. In Europe, post-glacial migration is assumed to have started from the three southern European peninsulas (southern refugia), where large areas remained free of permafrost and ice at the peak of the last glaciation. However, increasing palaeobotanical evidence for the presence of isolated tree populations in more northerly microrefugia has started to change this perception. Here we use the Northern Eurasian Plant Macrofossil Database and palaeoecological literature to show that post-glacial migration rates for trees may have been substantially lower (60-260 m yr(-1)) than those estimated by assuming migration from southern refugia only (115-550 m yr(-1)), and that early-successional trees migrated faster than mid- and late-successional trees. Post-glacial migration rates are in good agreement with those recently projected for the future with a population dynamical forest succession and dispersal model, mainly for early-successional trees and under optimal conditions. Although migration estimates presented here may be conservative because of our assumption of uniform dispersal, tree migration-rates clearly need reconsideration. We suggest that small outlier populations may be a key factor in understanding past migration rates and in predicting potential future range-shifts. The importance of outlier populations in the past may have an analogy in the future, as many tree species have been planted beyond their natural ranges, with a more beneficial microclimate than their regional surroundings. Therefore, climate-change-induced range-shifts in the future might well be influenced by such microrefugia.


Asunto(s)
Cambio Climático , Clima , Ecosistema , Árboles/crecimiento & desarrollo , Conservación de los Recursos Naturales/métodos , Europa (Continente) , Agricultura Forestal/métodos , Hielo , Cubierta de Hielo , Dinámica Poblacional , Árboles/clasificación
7.
Philos Trans R Soc Lond B Biol Sci ; 368(1624): 20120479, 2013 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-23836785

RESUMEN

Warming-induced expansion of trees and shrubs into tundra vegetation will strongly impact Arctic ecosystems. Today, a small subset of the boreal woody flora found during certain Plio-Pleistocene warm periods inhabits Greenland. Whether the twenty-first century warming will induce a re-colonization of a rich woody flora depends on the roles of climate and migration limitations in shaping species ranges. Using potential treeline and climatic niche modelling, we project shifts in areas climatically suitable for tree growth and 56 Greenlandic, North American and European tree and shrub species from the Last Glacial Maximum through the present and into the future. In combination with observed tree plantings, our modelling highlights that a majority of the non-native species find climatically suitable conditions in certain parts of Greenland today, even in areas harbouring no native trees. Analyses of analogous climates indicate that these conditions are widespread outside Greenland, thus increasing the likelihood of woody invasions. Nonetheless, we find a substantial migration lag for Greenland's current and future woody flora. In conclusion, the projected climatic scope for future expansions is strongly limited by dispersal, soil development and other disequilibrium dynamics, with plantings and unintentional seed dispersal by humans having potentially large impacts on spread rates.


Asunto(s)
Cambio Climático , Ecosistema , Árboles/fisiología , Regiones Árticas , Demografía , Groenlandia , Especies Introducidas , Modelos Biológicos , Especificidad de la Especie , Árboles/clasificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA