Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Magn Reson ; 272: 141-146, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27693965

RESUMEN

Signal enhancement by hyperpolarization is a way of overcoming the low sensitivity in magnetic resonance; MRI in particular. One of the most well-known methods, dissolution Dynamic Nuclear Polarization, has been used clinically in cancer patients. One way of ensuring a low bioburden of the hyperpolarized product is by use of a closed fluid path that constitutes a barrier to contamination. The fluid path can be filled with the pharmaceuticals, i.e. imaging agent and solvents, in a clean room, and then stored or immediately used at the polarizer. In this study, we present a method of filling the fluid path that allows it to be reused. The filling method has been investigated in terms of reproducibility at two extrema, high dose for patient use and low dose for rodent studies, using [1-13C]pyruvate as example. We demonstrate that the filling method allows high reproducibility of six quality control parameters with standard deviations 3-10 times smaller than the acceptance criteria intervals in clinical studies.

2.
Curr Pharm Des ; 22(1): 90-5, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26548307

RESUMEN

Magnetic resonance angiography (MRA) is a non-invasive technology that can be used for diagnosis and monitoring of cardiovascular disease; the number one cause of mortality worldwide. Hyperpolarized imaging agents provide signal enhancement of more than 10, 000 times, which implies large reduction in acquisition time and improved spatial resolution. We review the role of hyperpolarized 13C agents for MR angiography and present the literature in the field. Furthermore, we present a study of the benefit of intra-arterial injection over intravenous injection of hyperpolarized agent for cerebral angiography in the rat, and compare the performance of two standard angiographic pulse sequences, the gradient echo (GRE) sequence and the balanced steady-state free precession (bSSFP). 2D coronal cerebral angiographies using intra-arterial injections were acquired with a GRE sequence with in-plane resolution of 0.27 mm and matrix size 256x128, and 2D coronal cerebral angiographies were acquired with a bSSFP sequence with in-plane resolution of 0.55 mm and matrix size 128x64. The bSSFP sequence provides higher SNR in phantoms than the GRE sequence. Similarly, intravenous injections are imaged with higher SNR with the bSSFP sequence, where the signal destruction of the GRE sequence is avoided. However, for intra-arterial injections, the bSSFP sequence results in strong artefacts, and the GRE sequence is preferred. Hyperpolarized MRA presents many challenges and cannot currently compete with conventional contrast enhanced MRA. Further research may change this since hyperpolarization is still an immature methodology.


Asunto(s)
Enfermedades Cardiovasculares/patología , Cerebro/diagnóstico por imagen , Animales , Isótopos de Carbono/administración & dosificación , Cerebro/patología , Medios de Contraste/administración & dosificación , Humanos , Procesamiento de Imagen Asistido por Computador , Inyecciones Intraarteriales , Inyecciones Intravenosas , Angiografía por Resonancia Magnética , Masculino , Cintigrafía , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA