Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
EMBO J ; 34(21): 2633-51, 2015 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-26330466

RESUMEN

Interest in RNA dysfunction in amyotrophic lateral sclerosis (ALS) recently aroused upon discovering causative mutations in RNA-binding protein genes. Here, we show that extensive down-regulation of miRNA levels is a common molecular denominator for multiple forms of human ALS. We further demonstrate that pathogenic ALS-causing mutations are sufficient to inhibit miRNA biogenesis at the Dicing step. Abnormalities of the stress response are involved in the pathogenesis of neurodegeneration, including ALS. Accordingly, we describe a novel mechanism for modulating microRNA biogenesis under stress, involving stress granule formation and re-organization of DICER and AGO2 protein interactions with their partners. In line with this observation, enhancing DICER activity by a small molecule, enoxacin, is beneficial for neuromuscular function in two independent ALS mouse models. Characterizing miRNA biogenesis downstream of the stress response ties seemingly disparate pathways in neurodegeneration and further suggests that DICER and miRNAs affect neuronal integrity and are possible therapeutic targets.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , MicroARNs/biosíntesis , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/patología , Animales , Secuencia de Bases , Gránulos Citoplasmáticos/metabolismo , ARN Helicasas DEAD-box/metabolismo , Regulación hacia Abajo , Evaluación Preclínica de Medicamentos , Enoxacino/farmacología , Femenino , Células HEK293 , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , MicroARNs/genética , Neuronas Motoras/metabolismo , Interferencia de ARN , Procesamiento Postranscripcional del ARN , Ribonucleasa III/metabolismo , Estrés Fisiológico , Superóxido Dismutasa/genética , Superóxido Dismutasa-1
2.
J Cell Biol ; 166(7): 1055-67, 2004 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-15452146

RESUMEN

Aging is believed to be a nonadaptive process that escapes the force of natural selection. Here, we challenge this dogma by showing that yeast laboratory strains and strains isolated from grapes undergo an age- and pH-dependent death with features of mammalian programmed cell death (apoptosis). After 90-99% of the population dies, a small mutant subpopulation uses the nutrients released by dead cells to grow. This adaptive regrowth is inversely correlated with protection against superoxide toxicity and life span and is associated with elevated age-dependent release of nutrients and increased mutation frequency. Computational simulations confirm that premature aging together with a relatively high mutation frequency can result in a major advantage in adaptation to changing environments. These results suggest that under conditions that model natural environments, yeast organisms undergo an altruistic and premature aging and death program, mediated in part by superoxide. The role of similar pathways in the regulation of longevity in organisms ranging from yeast to mice raises the possibility that mammals may also undergo programmed aging.


Asunto(s)
Adaptación Fisiológica/genética , Envejecimiento/metabolismo , Saccharomyces cerevisiae/metabolismo , Superóxidos/metabolismo , Envejecimiento/genética , Envejecimiento Prematuro/genética , Envejecimiento Prematuro/metabolismo , Apoptosis/efectos de los fármacos , Apoptosis/genética , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Células Cultivadas , Medios de Cultivo/farmacología , Ambiente , Peróxido de Hidrógeno/farmacología , Mutación/efectos de los fármacos , Mutación/genética , Estrés Oxidativo/genética , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Especificidad de la Especie , Inanición
3.
J Biol Chem ; 279(31): 32055-62, 2004 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-15166213

RESUMEN

Among the phenotypes of Saccharomyces cerevisiae mutants lacking CuZn-superoxide dismutase (Sod1p) is an aerobic lysine auxotrophy; in the current work we show an additional leaky auxotrophy for leucine. The lysine and leucine biosynthetic pathways each contain a 4Fe-4S cluster enzyme homologous to aconitase and likely to be superoxide-sensitive, homoaconitase (Lys4p) and isopropylmalate dehydratase (Leu1p), respectively. We present evidence that direct aerobic inactivation of these enzymes in sod1 Delta yeast results in the auxotrophies. Located in the cytosol and intermembrane space of the mitochondria, Sod1p likely provides direct protection of the cytosolic enzyme Leu1p. Surprisingly, Lys4p does not share a compartment with Sod1p but is located in the mitochondrial matrix. The activity of a second matrix protein, the tricarboxylic acid cycle enzyme aconitase, was similarly lowered in sod1 Delta mutants. We measured only slight changes in total mitochondrial iron and found no detectable difference in mitochondrial "free" (EPR-detectable) iron making it unlikely that a gross defect in mitochondrial iron metabolism is the cause of the decreased enzyme activities. Thus, we conclude that when Sod1p is absent a lysine auxotrophy is induced because Lys4p is inactivated in the matrix by superoxide that originates in the intermembrane space and diffuses across the inner membrane.


Asunto(s)
Aminoácidos/biosíntesis , Proteínas Hierro-Azufre/química , Superóxido Dismutasa/química , Superóxidos/metabolismo , Membrana Celular/metabolismo , Citoplasma/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Genotipo , Hidroliasas/química , Hierro/química , Leucina/química , Lisina/química , Mitocondrias/metabolismo , Modelos Biológicos , Mutación , Paraquat , Fenotipo , Plásmidos/metabolismo , Saccharomyces cerevisiae/metabolismo , Superóxidos/química , Factores de Tiempo
4.
Genetics ; 163(1): 35-46, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12586694

RESUMEN

Signal transduction pathways inactivated during periods of starvation are implicated in the regulation of longevity in organisms ranging from yeast to mammals, but the mechanisms responsible for life-span extension are poorly understood. Chronological life-span extension in S. cerevisiae cyr1 and sch9 mutants is mediated by the stress-resistance proteins Msn2/Msn4 and Rim15. Here we show that mitochondrial superoxide dismutase (Sod2) is required for survival extension in yeast. Deletion of SOD2 abolishes life-span extension in sch9Delta mutants and decreases survival in cyr1:mTn mutants. The overexpression of Sods--mitochondrial Sod2 and cytosolic CuZnSod (Sod1)--delays the age-dependent reversible inactivation of mitochondrial aconitase, a superoxide-sensitive enzyme, and extends survival by 30%. Deletion of the RAS2 gene, which functions upstream of CYR1, also doubles the mean life span by a mechanism that requires Msn2/4 and Sod2. These findings link mutations that extend chronological life span in S. cerevisiae to superoxide dismutases and suggest that the induction of other stress-resistance genes regulated by Msn2/4 and Rim15 is required for maximum longevity extension.


Asunto(s)
Proteínas Fúngicas , Proteínas Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Superóxido Dismutasa/metabolismo , Aconitato Hidratasa/metabolismo , Proteínas de Unión al ADN/metabolismo , Mutación , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/crecimiento & desarrollo , Factores de Transcripción/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA