Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biomicrofluidics ; 17(2): 024107, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37124629

RESUMEN

Polydimethylsiloxane (PDMS) microfluidic systems have been instrumental in better understanding couplings between physical mechanisms and bacterial biofilm processes, such as hydrodynamic effects. However, precise control of the growth conditions, for example, the initial distribution of cells on the substrate or the boundary conditions in a flow system, has remained challenging. Furthermore, undesired bacterial colonization in crucial parts of the systems, in particular, in mixing zones or tubing, is an important factor that strongly limits the duration of the experiments and, therefore, impedes our ability to study the biophysics of biofilm evolving over long periods of time, as found in the environment, in engineering, or in medicine. Here, we develop a new approach that uses ultraviolet-C (UV-C) light-emitting diodes (LEDs) to confine bacterial development to specific zones of interest in the flow channels. The LEDs are integrated into a 3D printed light guide that is positioned upon the chip and used to irradiate germicidal UV-C directly through the PDMS. We first demonstrate that this system is successful in controlling undesired growth of Pseudomonas aeruginosa biofilm in inlet and outlet mixing zones during 48 h. We further illustrate how this can be used to define the initial distribution of bacteria to perturb already formed biofilms during an experiment and to control colonization for seven days-and possibly longer periods of time-therefore opening the way toward long-term biofilm experiments in microfluidic devices. Our approach is easily generalizable to existing devices at low cost and may, thus, become a standard in biofilm experiments in PDMS microfluidics.

2.
Soft Matter ; 16(42): 9726-9737, 2020 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-32996535

RESUMEN

This paper describes an experimental study of filtration of a colloidal suspension using microfluidic devices. A suspension of micrometer-scale colloids flows through parallel slit-shaped pores at fixed pressure drop. Clogs and cakes are systematically observed at pore entrance, for variable applied pressure drop and ionic strength. Based on image analysis of the layer of colloids close to the device wall, global and local studies are performed to analyse in detail the near-wall layer microstructure. Whereas global porosity of this layer does not seem to be affected by ionic strength and applied pressure drop, a local study shows some heterogeneity: clogs are more porous at the vicinity of the pore than far away. An analysis of medium-range order using radial distribution function shows a slightly more organized state at high ionic strength. This is confirmed by a local analysis using two-dimension continuous wavelet decomposition: the typical size of crystals of colloids is larger for low ionic strength, and it increases with distance from the pores. We bring these results together in a phase diagram involving colloid-colloid repulsive interactions and fluid velocity.

3.
Sci Rep ; 8(1): 12460, 2018 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-30127500

RESUMEN

Blockage of pores by particles is found in many processes, including filtration and oil extraction. We present filtration experiments through a linear array of ten channels with one dimension which is sub-micron, through which a dilute dispersion of Brownian polystyrene spheres flows under the action of a fixed pressure drop. The growth rate of a clog formed by particles at a pore entrance systematically increases with the number of already saturated (entirely clogged) pores, indicating that there is an interaction or "cross-talk" between the pores. This observation is interpreted based on a phenomenological model, stating that a diffusive redistribution of particles occurs along the membrane, from clogged to free pores. This one-dimensional model could be extended to two-dimensional membranes.

4.
Langmuir ; 34(4): 1394-1399, 2018 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-29293358

RESUMEN

We investigate the pressure-driven transport of particles 200 or 300 nm in diameter in shallow microfluidic channels ∼1 µm in height with a bottom wall characterized by a high roughness amplitude of ∼100 nm. This study starts with the description of an assay to generate cracks in hydrophilic thin polymer films together with a structural characterization of these corrugations. Microfluidic chips of variable height are then assembled on top of these rough surfaces, and the transport of particles is assessed by measuring the velocity distribution function for a set of pressure drops. We specifically detect anomalous transport properties for rough surfaces. The maximum particle velocity at the centerline of the channel is comparable to that obtained with smooth surfaces, but the average particle velocity increases nonlinearly with the flow rate. We suggest that the change in the boundary condition at the rough wall is not sufficient to account for our data and that the occurrence of contacts between the particle and the surface transports the particle away from the wall and speeds up its motion. We finally draw perspectives for the separation by field-flow fractionation.

5.
Phys Rev E ; 95(1-1): 013101, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28208477

RESUMEN

We evaluate the effect of the aspect ratio, i.e., the distance between the propellers H divided by the diameter D, on the slow dynamics of a von Kármán swirling flow driven by two propellers in a closed cylinder. We use a cell with a fixed diameter D but where the distance between the propellers can be turned continuously and where the inertia from the propellers can also be changed using different gears. No change on the dynamics is observed when the momentum of inertia is modified. Some dramatic changes of the shear layer position are observed modifying the aspect ratio Γ=H/D. A bifurcation of the shear layer position appears. Whereas for low Γ the shear layer position has a smooth evolution when turning the asymmetry between the rotation frequency of the propellers, for high Γ the transition becomes abrupt and a symmetry breaking appears. Secondly we observe that the spontaneous reversals with large residence times already observed in this experiment for Γ=1 [de la Torre and Burguete, Phys. Rev. Lett. 99, 054101 (2007)PRLTAO0031-900710.1103/PhysRevLett.99.054101] exist only in a narrow window of aspect ratio. We show using an experimental study of the mean flow structure and a numerical approach based on a Langevin equation with colored noise that the shear layer position seems to be decided by the mean flow structure, whereas the reversals are linked to the spatial distribution of the turbulent fluctuations in the cell.

6.
Phys Rev Lett ; 110(5): 054502, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23414023

RESUMEN

We investigate experimentally the electrokinetic properties of soft nanofluidic channels that consist in soap films with nanometric thickness, covered with charged surfactants. Both the electric and fluidic responses of the system are measured under an applied voltage drop along the film. The electric field is shown to induce an electro-osmotic hydrodynamic flow in the film. However, in contrast to systems confined between solid surfaces, the soft nature of the nanochannel results furthermore in a thickening of the film. This effect accordingly increases the total electro-osmotic flow rate, which behaves nonlinearly with the applied electric field. This behavior is rationalized in terms of an analogy with a Landau-Levich film withdrawn from a reservoir, with the driving velocity identified here with the electro-osmotic one.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA